Wang Zhongbo, Liu Wenting, Jiang Dongbin, et al. Nominal Stress Approach for Fatigue Life Estimationunder Corrosive Environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2): 161-164. (in Chinese)
Citation: LIN Jiaming, ZHANG Yi, YUE Ting, et al. Effect of asymmetric factors on carrier-based aircraft catapult launch safety[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 363-374. doi: 10.13700/j.bh.1001-5965.2017.0391(in Chinese)

Effect of asymmetric factors on carrier-based aircraft catapult launch safety

doi: 10.13700/j.bh.1001-5965.2017.0391
More Information
  • Corresponding author: WANG Lixin, E-mail:wlx_c818@163.com
  • Received Date: 09 Jun 2017
  • Accepted Date: 31 Aug 2017
  • Publish Date: 20 Feb 2018
  • Asymmetric factors lead to lateral-directional departure after catapult launch, and affect longitudinal flyaway characteristics as well. Principle analysis and numerical simulation are conducted to reveal yawing movement characteristics during deck run and lateral-directional departure characteristics in catapult flyaway, with the consideration of three typical factors, such as off-center position, catapult runway angle and deck roll. According to the safety requirements of sink off bow and bank angle, safe wind over deck (WOD) envelope is figured through numerical simulation under different takeoff conditions. Simulation results indicate that lower boundary of the envelope is limited by maximum sink off bow, left and right boundary is restricted to maximum bank angle, and upper boundary is determined by constant wind at sea level. The range of safe WOD's direction and speed would be obviously narrowed due to off-center position or deck roll.

     

  • [1]
    聂宏, 房兴波, 魏小辉, 等.舰载飞机弹射起飞动力学研究进展[J].南京航空航天大学学报, 2013, 45(6):727-738. doi: 10.3969/j.issn.1005-2615.2013.06.001

    NIE H, FANG X B, WEI X H, et al.Overview of carrier-based aircraft catapult launch dynamics[J].Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(6):727-738(in Chinese). doi: 10.3969/j.issn.1005-2615.2013.06.001
    [2]
    于浩, 聂宏.偏中心定位对弹射过程中飞机姿态的影响[J].北京航空航天大学学报, 2011, 37(1):10-14.

    YU H, NIE H.Effect of off-center location on aircraft attitude during catapult launch[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):10-14(in Chinese).
    [3]
    朱齐丹, 刘恒, 李晓琳.舰载机偏心情况下弹射起飞研究[J].飞行力学, 2016, 34(2):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htm

    ZHU Q D, LIU H, LI X L.Research on carrier-based aircraft catapult launching in the case of different eccentricity[J].Flight Dynamics, 2016, 34(2):10-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htm
    [4]
    王大海, 苏彬.舰面运动对弹射起飞特性的影响[J].飞行力学, 1994, 12(1):57-63.

    WANG D H, SU B.The deck motion effects on the catapult-assisted take-off characteristics of the carrier based airplane[J].Flight Dynamics, 1994, 12(1):57-63(in Chinese).
    [5]
    LUCAS C B. Catapult criteria for a carrier-based airplane: AD-702814[R]. Washington, D. C. : Defense Technical Information Center, 1968.
    [6]
    刘星宇, 许东松, 王立新.舰载飞机弹射起飞时的机舰参数适配特性[J].航空学报, 2010, 31(1):102-108.

    LIU X Y, XU D S, WANG L X.Match characteristics of aircraft-carrier parameters during catapult takeoff of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese).
    [7]
    郭元江, 李会杰, 申功璋, 等.复杂环境下舰载机弹射起飞环境因素建模分析[J].北京航空航天大学学报, 2011, 37(7):877-881.

    GUO Y J, LI H J, SHEN G Z, et al.Modeling and analyze of the environmental factors of carrier-based aircraft catapult launch in complex environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7):877-881(in Chinese).
    [8]
    严重中, 冯家波.舰载飞机弹射起飞上升段的自动控制飞行[J].南京航空航天大学学报, 1995, 27(4):431-438.

    YAN C Z, FENG J B.Automatic control flight for a carrier-based airplane in climb phase during catapult launch[J].Journal of Nanjing University of Aeronautics and Astronautics, 1995, 27(4):431-438(in Chinese).
    [9]
    WALLACE M M. F/A-18E/F catapult minimum end airspeed testing[D]. Knoxville: University of Tennessee, 2002: 85-88.
    [10]
    STEN C P. Evaluating fixed wing aircraft in the aircraft carrier environment: AD-A244869[R]. Washington, D. C. : Defense Technical Information Center, 1992.
    [11]
    KELLEY H J.Prediction of yawing stability characteristics of airplanes during catapulting[J].Journal of the Aeronautics Sciences, 1952(19):529-539.
    [12]
    SMALL D B. Full scale tests of nose tow catapulting[C]//1st AIAA Annual Meeting. Reston: AIAA, 1964: 1-11. doi: 10.2514/6.1964-327
    [13]
    于浩, 聂宏.舰载机偏中心定位弹射起飞弹射杆载荷分析[J].航空学报, 2010, 31(10):1953-1959.

    YU H, NIE H.Launch bar load analysis of carrier-based aircraft during off-center catapult launch[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1953-1959(in Chinese).
    [14]
    Naval Air Systems Command.NATOPS flight manual navy model F/A-18E/F 165533 and up aircraft[M].Washington, D.C.:Department of the Navy, 2008:Ⅲ-8-2.
    [15]
    WILKINSON C H, ROSCOE M F, VANDERVLIET G M. Determining fidelity standards for the shipboard launch and recovery task[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2001: 1-10. doi: 10.2514/6.2001-4062
    [16]
    贺少华, 刘东岳, 谭大力, 等.载机舰船气流场相关研究综述[J].舰船科学与技术, 2014, 36(2):1-7.

    HE S H, LIU D Y, TAN D L, et al.A review of researches on ship airwakes[J].Ship Science and Technology, 2014, 36(2):1-7(in Chinese).
    [17]
    WANG W J, QU X J, GUO L L.Multi-agent based hierarchy simulation models of carrier-based aircraft catapult launch[J].Chinese Journal of Aeronautics, 2008, 23(3):223-231.
    [18]
    ZHANG W, ZHANG Z, ZHU Q D.Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J].Chinese Journal of Aeronautics, 2009, 22(4):371-379. doi: 10.1016/S1000-9361(08)60113-2
    [19]
    CHAKRABORTY A, SEILER P, BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-71. doi: 10.2514/1.50674
    [20]
    NAPOLITANO M R, PARIS A C, SEANOR B A, et al. Estimation of the longitudinal aerodynamic parameters from flight data for the NASA F/A-18 HARV[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 1996: 469-478. doi: 10.2514/6.1996-3419
    [21]
    JOHNSON S A. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring: NASA TM-4240[R]. Washington, D. C. : NASA, 1990.
    [22]
    BUTTRILL C S, ARBUCKLE P D, HOFFLER K D. Simulation model of a twin-tail, high performance airplane: NASA TM-107601[R]. Washington, D. C. : NASA, 1992.
    [23]
    刘海良, 王立新.基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J].航空学报, 2015, 36(5):1432-1441.

    LIU H L, WANG L X.Assessment of longitudinal ground stability and control for civil aircraft based on digital virtual flight testing method[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1432-1441(in Chinese).
    [24]
    郭锁凤, 申功璋, 吴成富.先进飞行控制系统[M].北京:国防工业出版社, 2003:208.

    GUO S F, SHEN G Z, WU C F.Advanced flight control system[M].Beijing:National Defense Industry Press, 2003:208(in Chinese).
    [25]
    U. S. Department of the Navy. Catapulting and arresting gear forcing functions for aircraft structural design: MIL-STD-2066[S]. Melbourne: Engineering Specifications and Standards, 1981: 47-54.
    [26]
    SCHUST A P, YOUNG P N, SIMPSON W R. Automatic carrier landing system (ACLC) category Ⅲ certification manual: AD-A118181[R]. Washington, D. C. : Defense Technical Information Center, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(895) PDF downloads(337) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return