Citation: | ZHAN Bowen, SUN Lingyu, HUANG Bincheng, et al. Design and optimization of automotive composite helical spring[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1520-1527. doi: 10.13700/j.bh.1001-5965.2017.0548(in Chinese) |
A major problem in designing automotive structures is how to make full use of the flexible designability of composites and light weight of polymer matrix, and also consider the close connection among the material, structure and properties. Since the helical spring is one of the major load-bearing parts of suspension and subjected to complex loads, it is generally manufactured by spring steel with ultra-high performance. If replaced by lightweight composites, both safety and light weight should be satisfied, which makes the design of composite helical spring rather difficult. In this paper, an integrated materials-structure-performance design method of composite helical spring is proposed. According to the stress distribution on the cross section of spring under compression, carbon fiber reinforce polymer (CFRP) material with ±45° ply sequence is selected. Under the constraint conditions of stiffness, strength and installation space, the initial geometric parameters of helical spring are derived by analytical models based on spring stiffness and strength and composite material mechanics. Furthermore, the initial result is verified numerically by finite element simulation. Combining the design of orthogonal experiment with numerical simulation, the response surface model of stiffness and strength of helical spring to its geometric parameters is established. Finally, the optimal design of helical spring satisfying both required performance and weight reduction is obtained by genetic optimization algorithm. Compared with the metal helical spring, the CFRP one reduces the mass by 34.4%. As a representative product development case, it has demonstrated that the proposed method is a feasible integrated solution for design of automotive structural components with composite materials.
[1] |
张靠民, 李敏, 顾轶卓, 等.先进复合材料从飞机转向汽车应用的关键技术[J].中国材料进展, 2013, 32(11):685-695.
ZHANG K M, LI M, GU Y Z, et al.Key technology of advanced composite materials from aircraft to automobile[J].Materials China, 2013, 32(11):685-695(in Chinese).
|
[2] |
BUDAN D A, MANJUNATHA T S.Investigation on the feasibility of composite coil spring for automotive applications[J].World Academy of Science Engineering & Technology, 2010, 4(10):1035-1039.
|
[3] |
CHOI B L, CHOI B H.Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs[J].Composites Part B Engineering, 2015, 82:42-49. doi: 10.1016/j.compositesb.2015.08.005
|
[4] |
SEQUEIRA A A, SINGH R K, SHETTI G K.Comparative analysis of helical steel springs with composite springs using finite element method[J].Journal of Mechanical Engineering and Automation, 2016, 6(5A):63-70. doi: 10.5923.c.jmea.201601.12.html
|
[5] |
JANG D, JANG S. Development of a lightweight CFRP coil spring[C]//SAE 2014 World Congress & Exhibition, 2014.
|
[6] |
OH S H, CHOI B L.A determination of design parameters for application of composite coil spring in a passenger vehicle[J].Journal of the Korean Society of Manufacturing Process Engineers 2013, 12(1):77-83.
|
[7] |
DJOMSEU P, SARDOU M A, BERG T R. Composite coil spring development and testing[C]//IEEE/ASME/ASCE 2008 Joint Rail Conference. Piscataway, NJ: IEEE Press, 2008: 71-78.
|
[8] |
WANG G G.Adaptive response surface method using inherited Latin hypercube design points[J].Journal of Mechanical Design, 2003, 125(2):210-220. doi: 10.1115/1.1561044
|
[9] |
宁方飞, 刘晓嘉.一种新的响应面模型及其在轴流压气机叶型气动优化中的应用[J].航空学报, 2007, 28(4):813-820. http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htm
NING F F, LIU X J.New response surface model and its applications in aerodynamic optimization of axial compressor blade profile[J].Acta Aeroautica et Astronautica Sinica, 2007, 28(4):813-820(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htm
|
[10] |
ARORA V K, BHUSHAN G, AGGARWAL M L.Enhancement of fatigue life of multi-leaf spring by parameter optimization using RSM[J].Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2017, 39(4):1333-1349. doi: 10.1007%2Fs40430-016-0638-z
|
[11] |
杨永宝, 金达锋, 高希.CFRP圆柱螺旋弹簧静刚度预测理论及仿真[J].汽车技术, 2013(7):21-25.
YANG Y B, JIN D F, GAO X.Static stiffness prediction theory and simulation of CFRP cylindrical coil spring[J].Automobile Technology, 2013(7):21-25(in Chinese).
|
[12] |
朱建辉, 曾建江, 陈滨琦, 等.复合材料层合板压缩载荷下渐进损伤分析与试验验证[J].机械科学与技术, 2015, 34(5):785-789.
ZHU J H, ZENG J J, CHEN B Q, et al.Analysis and experimental validation of the progressive damage for laminate composite under compression[J].Mechanical Science & Technology for Aerospace Engineering, 2015, 34(5):785-789(in Chinese).
|
[13] |
沈观林, 胡更开, 刘彬.复合材料力学[M].北京:清华大学出版社, 2013:231-237.
SHEN G L, HU G K, LIU B. Mechanics of composite materials[M].Beijing:Tsinghua University Press, 2013:231-237(in Chinese).
|
[14] |
时培成, 龚建成.汽车悬架变刚度螺旋弹簧最优化设计[J].现代制造工程, 2006(11):112-114. doi: 10.3969/j.issn.1671-3133.2006.11.037
SHI P C, GONG J C.Optimal design for the variable stiffness coil spring of vehicle suspension[J].Modern Manufacturing Engineering, 2006(11):112-114(in Chinese). doi: 10.3969/j.issn.1671-3133.2006.11.037
|
[15] |
ZHAN B W, SUN L Y, HUANG B C. Energy absorption optimization of GFRP Laminate by considering inner-lamina damage model with parameter identification[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. New York: ASME, 2016, 11: 65774.
|
[16] |
徐小力, 徐洪安, 王少红.旋转机械的遗传算法优化神经网络预测模型[J].机械工程学报, 2003, 39(2):140-144.
XU X L, XU H A, WANG S H.Predicting model of the neural network with adaptation based on GA optimization to rotary machinery[J].Chinese Journal of Mechanical Engineering, 2003, 39(2):140-144(in Chinese).
|
[1] | DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152. |
[2] | WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965. |
[3] | LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0711. |
[4] | YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0746. |
[5] | MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698. |
[6] | WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0681. |
[7] | QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642. |
[8] | GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081 |
[9] | ZHANG X,LU X W,LAI L J. Large-stroke microposition stage driven by reluctance actuator and its trajectory tracking control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2852-2861 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0702. |
[10] | ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607. |
[11] | CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635 |
[12] | YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879. |
[13] | JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666. |
[14] | CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880. |
[15] | LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035. |
[16] | TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513. |
[17] | DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340. |
[18] | ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416. |
[19] | YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053 |
[20] | PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094 |
1. | 张飞桥,张亦驰,严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测. 科学技术与工程. 2024(05): 2150-2157 . ![]() | |
2. | 吴明功,毕可心,温祥西,孙继昆. 基于飞行冲突网络最优支配集的冲突调配策略. 北京航空航天大学学报. 2023(02): 242-253 . ![]() | |
3. | 岳仁田,马赵飞. 基于几何关系的无人机低空飞行冲突探测与解脱策略. 中国安全科学学报. 2023(05): 112-120 . ![]() | |
4. | 郭华,郭小和. 改进速度障碍法的无人机局部路径规划算法. 航空学报. 2023(11): 271-281 . ![]() | |
5. | 杨建航,张福彪,王江. 基于可达集的无人机低空飞行冲突解脱算法. 北京航空航天大学学报. 2023(07): 1813-1827 . ![]() | |
6. | 王尔申,宋远上,佟刚,王传云,曲萍萍,徐嵩. 基于SVM的低空飞行冲突探测改进模型. 北京航空航天大学学报. 2022(01): 8-14 . ![]() | |
7. | 张宏宏,甘旭升,孙静娟,王宁,陈致远. 针对合作型无人机的最优防相撞策略. 计算机工程与应用. 2022(04): 290-297 . ![]() | |
8. | 高扬,郭钒,陈靖淞,李高磊,王向章. 融合空域无人机与有人机冲突风险预测与解脱. 安全与环境学报. 2022(06): 3288-3294 . ![]() | |
9. | 牛胜华,韩佩. 智能巡查机器人自主避撞系统设计. 电子设计工程. 2021(04): 155-158+163 . ![]() | |
10. | 王红勇,邓涛涛,徐文强. 基于调速的飞行冲突探测与解脱方法. 科学技术与工程. 2021(13): 5584-5591 . ![]() | |
11. | 王新语,夏侯云翔,王耀锐. 基于复杂网络的空中交通流量控制系统设计. 自动化技术与应用. 2021(09): 137-141+151 . ![]() | |
12. | 杨文达,吴明功,温祥西,毕可心,蒋旭瑞. 基于速度障碍法的三维确定型冲突探测模型. 西华大学学报(自然科学版). 2021(06): 1-6 . ![]() | |
13. | 焦卫东,姚军强,王瑞冬. 基于凸包围盒的飞行冲突检测算法. 中国安全科学学报. 2021(12): 32-38 . ![]() | |
14. | 张宏宏,甘旭升,李昂,高志强,徐鑫宇. 基于速度障碍法的无人机避障与航迹恢复策略. 系统工程与电子技术. 2020(08): 1759-1767 . ![]() | |
15. | 徐鹏,康雪晶. 改进互动速度障碍的多机器人协同避障. 自动化与仪表. 2020(09): 35-39 . ![]() |