Citation: | ZHAN Bowen, SUN Lingyu, HUANG Bincheng, et al. Design and optimization of automotive composite helical spring[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1520-1527. doi: 10.13700/j.bh.1001-5965.2017.0548(in Chinese) |
A major problem in designing automotive structures is how to make full use of the flexible designability of composites and light weight of polymer matrix, and also consider the close connection among the material, structure and properties. Since the helical spring is one of the major load-bearing parts of suspension and subjected to complex loads, it is generally manufactured by spring steel with ultra-high performance. If replaced by lightweight composites, both safety and light weight should be satisfied, which makes the design of composite helical spring rather difficult. In this paper, an integrated materials-structure-performance design method of composite helical spring is proposed. According to the stress distribution on the cross section of spring under compression, carbon fiber reinforce polymer (CFRP) material with ±45° ply sequence is selected. Under the constraint conditions of stiffness, strength and installation space, the initial geometric parameters of helical spring are derived by analytical models based on spring stiffness and strength and composite material mechanics. Furthermore, the initial result is verified numerically by finite element simulation. Combining the design of orthogonal experiment with numerical simulation, the response surface model of stiffness and strength of helical spring to its geometric parameters is established. Finally, the optimal design of helical spring satisfying both required performance and weight reduction is obtained by genetic optimization algorithm. Compared with the metal helical spring, the CFRP one reduces the mass by 34.4%. As a representative product development case, it has demonstrated that the proposed method is a feasible integrated solution for design of automotive structural components with composite materials.
[1] |
张靠民, 李敏, 顾轶卓, 等.先进复合材料从飞机转向汽车应用的关键技术[J].中国材料进展, 2013, 32(11):685-695.
ZHANG K M, LI M, GU Y Z, et al.Key technology of advanced composite materials from aircraft to automobile[J].Materials China, 2013, 32(11):685-695(in Chinese).
|
[2] |
BUDAN D A, MANJUNATHA T S.Investigation on the feasibility of composite coil spring for automotive applications[J].World Academy of Science Engineering & Technology, 2010, 4(10):1035-1039.
|
[3] |
CHOI B L, CHOI B H.Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs[J].Composites Part B Engineering, 2015, 82:42-49. doi: 10.1016/j.compositesb.2015.08.005
|
[4] |
SEQUEIRA A A, SINGH R K, SHETTI G K.Comparative analysis of helical steel springs with composite springs using finite element method[J].Journal of Mechanical Engineering and Automation, 2016, 6(5A):63-70. doi: 10.5923.c.jmea.201601.12.html
|
[5] |
JANG D, JANG S. Development of a lightweight CFRP coil spring[C]//SAE 2014 World Congress & Exhibition, 2014.
|
[6] |
OH S H, CHOI B L.A determination of design parameters for application of composite coil spring in a passenger vehicle[J].Journal of the Korean Society of Manufacturing Process Engineers 2013, 12(1):77-83.
|
[7] |
DJOMSEU P, SARDOU M A, BERG T R. Composite coil spring development and testing[C]//IEEE/ASME/ASCE 2008 Joint Rail Conference. Piscataway, NJ: IEEE Press, 2008: 71-78.
|
[8] |
WANG G G.Adaptive response surface method using inherited Latin hypercube design points[J].Journal of Mechanical Design, 2003, 125(2):210-220. doi: 10.1115/1.1561044
|
[9] |
宁方飞, 刘晓嘉.一种新的响应面模型及其在轴流压气机叶型气动优化中的应用[J].航空学报, 2007, 28(4):813-820. http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htm
NING F F, LIU X J.New response surface model and its applications in aerodynamic optimization of axial compressor blade profile[J].Acta Aeroautica et Astronautica Sinica, 2007, 28(4):813-820(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htm
|
[10] |
ARORA V K, BHUSHAN G, AGGARWAL M L.Enhancement of fatigue life of multi-leaf spring by parameter optimization using RSM[J].Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2017, 39(4):1333-1349. doi: 10.1007%2Fs40430-016-0638-z
|
[11] |
杨永宝, 金达锋, 高希.CFRP圆柱螺旋弹簧静刚度预测理论及仿真[J].汽车技术, 2013(7):21-25.
YANG Y B, JIN D F, GAO X.Static stiffness prediction theory and simulation of CFRP cylindrical coil spring[J].Automobile Technology, 2013(7):21-25(in Chinese).
|
[12] |
朱建辉, 曾建江, 陈滨琦, 等.复合材料层合板压缩载荷下渐进损伤分析与试验验证[J].机械科学与技术, 2015, 34(5):785-789.
ZHU J H, ZENG J J, CHEN B Q, et al.Analysis and experimental validation of the progressive damage for laminate composite under compression[J].Mechanical Science & Technology for Aerospace Engineering, 2015, 34(5):785-789(in Chinese).
|
[13] |
沈观林, 胡更开, 刘彬.复合材料力学[M].北京:清华大学出版社, 2013:231-237.
SHEN G L, HU G K, LIU B. Mechanics of composite materials[M].Beijing:Tsinghua University Press, 2013:231-237(in Chinese).
|
[14] |
时培成, 龚建成.汽车悬架变刚度螺旋弹簧最优化设计[J].现代制造工程, 2006(11):112-114. doi: 10.3969/j.issn.1671-3133.2006.11.037
SHI P C, GONG J C.Optimal design for the variable stiffness coil spring of vehicle suspension[J].Modern Manufacturing Engineering, 2006(11):112-114(in Chinese). doi: 10.3969/j.issn.1671-3133.2006.11.037
|
[15] |
ZHAN B W, SUN L Y, HUANG B C. Energy absorption optimization of GFRP Laminate by considering inner-lamina damage model with parameter identification[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. New York: ASME, 2016, 11: 65774.
|
[16] |
徐小力, 徐洪安, 王少红.旋转机械的遗传算法优化神经网络预测模型[J].机械工程学报, 2003, 39(2):140-144.
XU X L, XU H A, WANG S H.Predicting model of the neural network with adaptation based on GA optimization to rotary machinery[J].Chinese Journal of Mechanical Engineering, 2003, 39(2):140-144(in Chinese).
|
[1] | WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991. |
[2] | YANG Gong-peng, ZHOU Zheng-gan, MA Teng-fei, WANG Jun, LI Yang, ZHOU Wen-bin. Research on finite element simulation modeling for ultrasonic testing of coarse-grained materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0676 |
[3] | CHEN Shi, XU He-ming, SUN Kai, XU Yi-han, ZHANG Yi-shang. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0639 |
[4] | WANG Y T,LAN Q S,ZHOU Z,et al. Design and aerodynamic analysis of blended wing body with variable camber technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1292-1307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0493. |
[5] | YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0763. |
[6] | LI W T,HE Y Q,ZHANG Y Y,et al. Complex burn-back analysis and internal ballistic performance prediction of non-uniform grain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2524-2537 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0669. |
[7] | GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0826. |
[8] | ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0451. |
[9] | HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0634. |
[10] | LIU R,BAI J Q,QIU Y S. Research and application of parallel infill sampling method based on non-dominated sorting[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1446-1459 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0831. |
[11] | MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0244. |
[12] | LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0619. |
[13] | FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566. |
[14] | HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652. |
[15] | CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0677. |
[16] | ZHANG Zhao, PENG Yiming, ZHOU Fuliang, WEI Xiaohui, NIE Hong, YANG Gang. Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1951-1959. doi: 10.13700/j.bh.1001-5965.2021.0059 |
[17] | ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154 |
[18] | YANG Zhan-gang, KE Zhong-shu, YANG Xu-wei, BAO Xing-wang. Analysis of the influence of finishing process on the electrical properties of composite skin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0763 |
[19] | YANG Hui, FAN Shuoshuo, WANG Yan, LIU Rongqiang, XIAO Hong. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091 |
[20] | XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137 |
1. | 姜宗平. 一种托盘车用可调弹性辅助轮总成设计. 工程机械. 2024(08): 131-134+12-13 . ![]() | |
2. | 叶国方 ,杨小兵 ,廖国峰 ,许少少 . 一种耐高温环氧树脂及其预浸料的制备与性能研究. 化工新型材料. 2022(02): 119-123 . ![]() | |
3. | 熊志远,宋瑞祥,赵娜,赵阳. 圆柱螺旋弹簧轻量化设计探讨. 机械设计与制造. 2022(03): 176-180+184 . ![]() | |
4. | 谢俊凡. 复合材料螺旋弹簧参数化仿真分析. 工程机械. 2021(08): 49-54+9-10 . ![]() | |
5. | 徐伟伟,文友谊,顾轶卓,李博,涂家祎,张佐光. 航空用国产碳纤维/双马树脂复合材料湿热特性. 北京航空航天大学学报. 2020(01): 86-94 . ![]() | |
6. | 熊志远,宋瑞祥,吴瑞,赵娜,赵阳. 螺旋弹簧的减重试验设计. 机械研究与应用. 2020(01): 26-29+32 . ![]() | |
7. | 彭宇玲. 汽车侧面碰撞试验B柱耐撞性能优化及轻量化设计. 机械设计与制造工程. 2020(05): 92-96 . ![]() | |
8. | 戚文,李晓,周细应,答建成,郝艳,杜玲玲. 碳纤维树脂基复合材料螺旋弹簧的成型工艺及研究进展. 塑料工业. 2020(S1): 35-40 . ![]() | |
9. | 陈潇凯,李超. 纤维增强复合材料螺旋弹簧刚度预测模型. 北京理工大学学报. 2020(07): 725-730 . ![]() | |
10. | 宫琦,陈秉智. 轻质材料圆弹簧对车辆动力学性能影响分析. 机械设计与制造工程. 2020(10): 97-101 . ![]() | |
11. | 李重华,刘丰睿,叶振信,赵丽滨. 考虑横截面形状和几何尺寸的弹簧优化的两步式策略. 西安交通大学学报. 2020(11): 74-80 . ![]() | |
12. | 陈航. 基于模块化的孔口防喷除尘装置设计. 煤矿机械. 2019(11): 20-22 . ![]() |