Citation: | ZHAO Liang, XING Yuming, LYU Qian, et al. Numerical simulation of melting process of nanoparticle-enhanced phase change materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712(in Chinese) |
The latent heat thermal energy storage can be applied widely in aerospace domain and many other industrial fields. However, phase change materials suffer from low thermal conductivity that constrains their engineering application. Nano materials with high thermal conductivity can effectively improve the thermal conductivity of phase change materials. For simulating the melting process in more detail, the physical properties of paraffin composited with three representative kinds of nano materials were founded based on the Maxwell-Garnett type effective medium theory (EMT). The volume of fluid (VOF) model and the enthalpy-porosity model were coupled to simulate the melting process of the pure paraffin and the paraffin composited with nano diamond (ND), single-walled carbon nanotube (SWCNT) and grapheme nano platelets (GnP) under a constant wall temperature. Meanwhile the volume expansion was taken into account. Numerical calculations show that the natural convection is mainly distributed at the region closed to the solid-liquid interface, the region closed to the heating surface and the region adjacent to air-liquid interface. Among these three kinds of nano materials, GnP is the most promising additive that can enhance thermal conductivity of phase change material. For a fixed GnP loading of volume fraction of 3%, the solid phase heat conductivity coefficient of nanoparticle-enhanced phase change materials increases by 486% compared to that of pure paraffin, and the melting time of phase change materials decreases by 69%. Meanwhile, the melting process of the nano-composite phase change materials can be significantly shortened by raising the temperature of the heating surface.
[1] |
张寅平, 胡汉平, 孔祥冬, 等.相变贮能:理论和应用[M].合肥:中国科学技术大学出版社, 1996:289-332.
ZHANG Y P, HU H P, KONG X D, et al.Phase change energy storage:Theory and application[M].Hefei:Press of University of Science and Technology of China, 1996:289-332(in Chinese).
|
[2] |
MIRÓ L, GASIA J, CABEZA L F.Thermal energy storage(TES) for industrial waste heat (IWH) recovery:A review[J].Applied Energy, 2016, 179:284-301. doi: 10.1016/j.apenergy.2016.06.147
|
[3] |
WU S, LI T X, YAN T, et al.High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J].International Journal of Heat and Mass Transfer, 2016, 102:733-744. doi: 10.1016/j.ijheatmasstransfer.2016.06.066
|
[4] |
BOSE P, AMIRTHAM V A.A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J].Renewable and Sustainable Energy Reviews, 2016, 65:81-100. doi: 10.1016/j.rser.2016.06.071
|
[5] |
KRISHNA J, KISHORE P S, SOLOMON A B.Heat pipe with nano enhanced-PCM for electronic cooling application[J].Experimental Thermal and Fluid Science, 2017, 81:84-92. doi: 10.1016/j.expthermflusci.2016.10.014
|
[6] |
LI T, LEE J H, WANG R, et al.Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J].International Journal of Heat and Mass Transfer, 2014, 75:1-11. doi: 10.1016/j.ijheatmasstransfer.2014.03.054
|
[7] |
LI T, LEE J H, WANG R, et al.Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J].Energy, 2013, 55:752-761. doi: 10.1016/j.energy.2013.04.010
|
[8] |
FANG X, FAN L W, DING Q, et al.Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J].Energy and Fuels, 2013, 27(7):4041-4047. doi: 10.1021/ef400702a
|
[9] |
ARICI M, TVTVNCV E, KAN M, et al.Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls[J].International Journal of Heat and Mass Transfer, 2017, 104:7-17. doi: 10.1016/j.ijheatmasstransfer.2016.08.017
|
[10] |
HARISH S, OREJON D, TAKATA Y, et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J].Applied Thermal Engineering, 2015, 80:205-211. doi: 10.1016/j.applthermaleng.2015.01.056
|
[11] |
MOTAHAR S, ALEMRAJABI A A, KHODABANDEH R.Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure[J].International Journal of Heat and Mass Transfer, 2017, 109:134-146. doi: 10.1016/j.ijheatmasstransfer.2017.01.109
|
[12] |
陈杨华, 李钰, 郭文帅, 等.石蜡基碳纳米管复合相变蓄冷材料的热性能研究[J].制冷学报, 2014, 35(5):110-113. doi: 10.3969/j.issn.0253-4339.2014.05.020
CHEN Y H, LI Y, GUO W S, et al.Thermophysical properties of cool storage of paraffin-based composite phase change materials filled with carbon nanotubes[J].Jounal of Refrigeration, 2014, 35(5):110-113(in Chinese). doi: 10.3969/j.issn.0253-4339.2014.05.020
|
[13] |
NAN C W.Effective-medium theory of piezoelectric composites[J].Journal of Applied Physics, 1994, 76(2):1155-1163. doi: 10.1063/1.357839
|
[14] |
NAN C W, BIRRINGER R, CLARKE D R, et al.Effective thermal conductivity of particulate composites with interfacial thermal resistance[J].Journal of Applied Physics, 1997, 81(10):6692-6699. doi: 10.1063/1.365209
|
[15] |
SANTAMARÍA-HOLEK I, MENDOZA C I.The rheology of concentrated suspensions of arbitrarily-shaped particles[J].Journal of Colloid and Interface Science, 2010, 346(1):118-126. doi: 10.1016/j.jcis.2010.02.033
|
[16] |
DAS N, TAKATA Y, KOHNO M, et al.Melting of graphene based phase change nanocomposites in vertical latent heat thermal energy storage unit[J].Applied Thermal Engineering, 2016, 107:101-113. doi: 10.1016/j.applthermaleng.2016.06.166
|
[17] |
AL-ABIDI A A, BIN MAT S, SOPIAN K, et al.CFD applications for latent heat thermal energy storage:A review[J].Renewable and Sustainable Energy Reviews, 2013, 20:353-363. doi: 10.1016/j.rser.2012.11.079
|
[18] |
NASTAC L, ZHANG L, THOMAS B G, et al.CFD modeling and simulation in materials processing[C]//Proceedings of TMS2016 Annual Meeting.Berlin: Springer, 2016: 870202.
|
[19] |
SATTARI H, MOHEBBI A, AFSAHI M M, et al.CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule[J].International Journal of Refrigeration, 2017, 73:209-218. doi: 10.1016/j.ijrefrig.2016.09.007
|
[20] |
SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al.Effect of internal void placement on the heat transfer performance-Encapsulated phase change material for energy storage[J].Renewable Energy, 2015, 78:438-447. doi: 10.1016/j.renene.2015.01.035
|
[21] |
夏莉, 张鹏, 王如竹.具有自由表面的固-液相变的数值模拟与实验研究[J].热能动力工程, 2010, 25(5):505-509. http://d.old.wanfangdata.com.cn/Periodical/rndlgc201005008
XIA L, ZHANG P, WANG R Z.Numerical simulation and experimental study of the solid-liquid phase change on free surface[J].Journal of Engineering for Thermal Energy & Power, 2010, 25(5):505-509(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rndlgc201005008
|
[22] |
YE W B, ZHU D S, WANG N.Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions[J].Applied Thermal Engineering, 2012, 42:49-57. doi: 10.1016/j.applthermaleng.2012.03.002
|
[23] |
KRIEGER I M, DOUGHERTY T J.A mechanism for non-Newtonian flow in suspensions of rigid spheres[J].Transactions of the Society of Rheology, 1959, 3(1):137-152. doi: 10.1122/1.548848
|
[24] |
SMITH H.Transport phenomena[M]//KUPERMAN A W.Encyclopedia of applied physics.Weinhem: Wiley, 2003: 270-272.
|
[25] |
KHODADADI J M, FAN L, BABAEI H.Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage:A review[J].Renewable and Sustainable Energy Reviews, 2013, 24:418-444. doi: 10.1016/j.rser.2013.03.031
|
[26] |
DAS N, KOHNO M, TAKATA Y, et al.Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system[J].Applied Thermal Engineering, 2017, 125:880-890. doi: 10.1016/j.applthermaleng.2017.07.084
|
[27] |
吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州: 华南理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10561-2010227792.htm
WU S Y.Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials[D].Guangzhou: South China University of Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-2010227792.htm
|