Citation: | XU Limin, ZHANG Tao, TAO Jiaweiet al. Energy-optimal and fuel-optimal problems for Lambert rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1888-1893. doi: 10.13700/j.bh.1001-5965.2017.0731(in Chinese) |
The Lambert two-impulse rendezvous problem is an important problem in orbital-transfer, rendezvous and docking and other fields in space engineering. Fuel-optimal and energy-optimal Lambert rendezvous problems are a kind of Lambert optimization problem that has the typical application background and engineering requirements. In this paper, an analytical calculation method based on vector form is proposed for energy-optimal and fuel-optimal Lambert rendezvous problems, and then the analytic solution in vector form is developed for the energy-optimal and fuel-optimal Lambert rendezvous problems. The nature and characteristics of the two analytic solutions for optimization rendezvous problem are analyzed and contrasted. The simulation results prove the correctness of this method and that fuel consumption of fuel-optimal orbit is less than that of energy-optimal orbit.
[1] |
AVANZIA G.A simple Lambert algorithm[J].Journal of Guidance, Control, and Dynamics, 2008, 31(2):1587-1594. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_93ea1552c868f4ff6486147ed99ab380
|
[2] |
BATTIN R H.Lambert's problem revisited[J].AIAA Journal, 1977, 15(5):705-713. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234079826/
|
[3] |
BLANCHARD R C, DEVANEY R A, LANCASTER E R.A note on Lambert's theorem[J].Journal of Spacecraft and Rockets, 1966, 3(9):1436-1438. doi: 10.2514/3.28673
|
[4] |
AVANZINI G, PALMAS A, VELLUTINI E.Solution of low-thrust Lambert problem with perturbative expansions of equinoctial elements[J].Journal of Guidance, Control, and Dynamics, 2015, 38(8):1585-1601. doi: 10.2514/1.G001018
|
[5] |
SCHUMACHERJR P W, SABOL C, HIGGINSON C, et al.Uncertain Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2015, 38(7):1573-1584. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC025093209/
|
[6] |
WEN C, ZHAO Y, SHI P.Derivative analysis and algorithm modification of transverse-eccentricity-based Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2014, 37(4):1195-1201. doi: 10.2514/1.62351
|
[7] |
ZHANG G, MORTARI D, ZHOU D.Constrained multiple-revolution Lambert's problem[J].Journal of Guidance, Control, and Dynamics, 2010, 33(4):1779-1786. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0217139824/
|
[8] |
朱仁璋.航天器交会对接技术[M].北京:国防工业出版社, 2007:37.
ZHU R Z.Rendezvous and docking techniques of spacecraft[M].Beijing:National Defense Industry Press, 2007:37(in Chinese).
|
[9] |
唐国金.航天器轨迹优化理论、方法及应用[M].北京:科学出版社, 2012:178.
TANG G J.Spacecraft trajectory optimization theory, method and application[M].Beijing:Science Press, 2012:178(in Chinese).
|
[10] |
朱仁璋, 蒙薇, 胡锡婷.航天器交会中的Lambert问题[J].中国空间科学技术, 2006, 26(1):49-55. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs200606009
ZHU R Z, MENG W, HU X T.Lambert problem in spacecraft rendezvous[J].Chinese Space Science and Technology, 2006, 26(1):49-55(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs200606009
|
[11] |
雍恩米, 陈磊, 唐国金.飞行器轨迹优化数值方法综述[J].宇航学报, 2008, 29(3):397-406. http://d.old.wanfangdata.com.cn/Periodical/yhxb200802002
YONG E M, CHEN L, TANG G J.A survey of numerical methods for trajectory optimization of spacecraft[J].Journal of Astronautics, 2008, 29(3):397-406(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb200802002
|
[12] |
AVENDANO M, MORTARI D.A closed-form solution to the minimum ΔVtot2 Lambert's problem[J].Celestial Mechanics & Dynamical Astronomy, 2010, 106(1):25-37. http://adsabs.harvard.edu/abs/2010CeMDA.106...25A
|
[13] |
LEEGHIM H, JAROUX B A.Energy-optimal solution to the Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):1008-1010. doi: 10.2514/1.46606
|
[14] |
PRADO A F, BROUCKE A R.The minimum delta-V Lambert's problem[J].Control and Automation, 1996, 2(1):84-90. http://adsabs.harvard.edu/abs/1994STIN...9617995B
|
[15] |
佘志坤, 薛白, 丛源良, 等.最优双冲量交会问题的数学建模与数值求解[J].宇航学报, 2010, 31(1):155-161. doi: 10.3873/j.issn.1000-1328.2010.01.025
SHE Z K, XUE B, CONG Y L, et al.Mathematical modeling and numerical solving of the optimal two-impulse rendezvous problem[J].Journal of Astronautics, 2010, 31(1):155-161(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.025
|
[16] |
陈长青, 解永春.最优冲量交会的研究进展[J].空间控制技术与应用, 2008, 34(12):18-23. http://d.old.wanfangdata.com.cn/Periodical/kjkzjsyyy200806004
CHEN C Q, XIE Y C.Development of optimal impulsive rendezvous[J].Aerospace Control and Application, 2008, 34(12):18-23(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjkzjsyyy200806004
|
[17] |
黄勇, 李小将, 张东来, 等.混合遗传算法在最优Lambert轨道转移设计中的应用[J].飞行力学, 2013, 31(3):269-272. http://d.old.wanfangdata.com.cn/Periodical/fxlx201303017
HUANG Y, LI X J, ZHANG D L, et al.Application of hybrid genetic algorithm in optimal Lambert orbital transfer design[J].Flight Dynamics, 2013, 31(3):269-272(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201303017
|