XU Limin, ZHANG Tao, TAO Jiaweiet al. Energy-optimal and fuel-optimal problems for Lambert rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1888-1893. doi: 10.13700/j.bh.1001-5965.2017.0731(in Chinese)
Citation: XU Limin, ZHANG Tao, TAO Jiaweiet al. Energy-optimal and fuel-optimal problems for Lambert rendezvous[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1888-1893. doi: 10.13700/j.bh.1001-5965.2017.0731(in Chinese)

Energy-optimal and fuel-optimal problems for Lambert rendezvous

doi: 10.13700/j.bh.1001-5965.2017.0731
Funds:

National Natural Science Foundation of China 61673239

More Information
  • Corresponding author: ZHANG Tao, E-mail:taozhang@tsinghua.edu.cn
  • Received Date: 22 Nov 2017
  • Accepted Date: 09 Mar 2018
  • Publish Date: 20 Sep 2018
  • The Lambert two-impulse rendezvous problem is an important problem in orbital-transfer, rendezvous and docking and other fields in space engineering. Fuel-optimal and energy-optimal Lambert rendezvous problems are a kind of Lambert optimization problem that has the typical application background and engineering requirements. In this paper, an analytical calculation method based on vector form is proposed for energy-optimal and fuel-optimal Lambert rendezvous problems, and then the analytic solution in vector form is developed for the energy-optimal and fuel-optimal Lambert rendezvous problems. The nature and characteristics of the two analytic solutions for optimization rendezvous problem are analyzed and contrasted. The simulation results prove the correctness of this method and that fuel consumption of fuel-optimal orbit is less than that of energy-optimal orbit.

     

  • [1]
    AVANZIA G.A simple Lambert algorithm[J].Journal of Guidance, Control, and Dynamics, 2008, 31(2):1587-1594.
    [2]
    BATTIN R H.Lambert's problem revisited[J].AIAA Journal, 1977, 15(5):705-713.
    [3]
    BLANCHARD R C, DEVANEY R A, LANCASTER E R.A note on Lambert's theorem[J].Journal of Spacecraft and Rockets, 1966, 3(9):1436-1438. doi: 10.2514/3.28673
    [4]
    AVANZINI G, PALMAS A, VELLUTINI E.Solution of low-thrust Lambert problem with perturbative expansions of equinoctial elements[J].Journal of Guidance, Control, and Dynamics, 2015, 38(8):1585-1601. doi: 10.2514/1.G001018
    [5]
    SCHUMACHERJR P W, SABOL C, HIGGINSON C, et al.Uncertain Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2015, 38(7):1573-1584.
    [6]
    WEN C, ZHAO Y, SHI P.Derivative analysis and algorithm modification of transverse-eccentricity-based Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2014, 37(4):1195-1201. doi: 10.2514/1.62351
    [7]
    ZHANG G, MORTARI D, ZHOU D.Constrained multiple-revolution Lambert's problem[J].Journal of Guidance, Control, and Dynamics, 2010, 33(4):1779-1786.
    [8]
    朱仁璋.航天器交会对接技术[M].北京:国防工业出版社, 2007:37.

    ZHU R Z.Rendezvous and docking techniques of spacecraft[M].Beijing:National Defense Industry Press, 2007:37(in Chinese).
    [9]
    唐国金.航天器轨迹优化理论、方法及应用[M].北京:科学出版社, 2012:178.

    TANG G J.Spacecraft trajectory optimization theory, method and application[M].Beijing:Science Press, 2012:178(in Chinese).
    [10]
    朱仁璋, 蒙薇, 胡锡婷.航天器交会中的Lambert问题[J].中国空间科学技术, 2006, 26(1):49-55.

    ZHU R Z, MENG W, HU X T.Lambert problem in spacecraft rendezvous[J].Chinese Space Science and Technology, 2006, 26(1):49-55(in Chinese).
    [11]
    雍恩米, 陈磊, 唐国金.飞行器轨迹优化数值方法综述[J].宇航学报, 2008, 29(3):397-406.

    YONG E M, CHEN L, TANG G J.A survey of numerical methods for trajectory optimization of spacecraft[J].Journal of Astronautics, 2008, 29(3):397-406(in Chinese).
    [12]
    AVENDANO M, MORTARI D.A closed-form solution to the minimum ΔVtot2 Lambert's problem[J].Celestial Mechanics & Dynamical Astronomy, 2010, 106(1):25-37.
    [13]
    LEEGHIM H, JAROUX B A.Energy-optimal solution to the Lambert problem[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):1008-1010. doi: 10.2514/1.46606
    [14]
    PRADO A F, BROUCKE A R.The minimum delta-V Lambert's problem[J].Control and Automation, 1996, 2(1):84-90.
    [15]
    佘志坤, 薛白, 丛源良, 等.最优双冲量交会问题的数学建模与数值求解[J].宇航学报, 2010, 31(1):155-161. doi: 10.3873/j.issn.1000-1328.2010.01.025

    SHE Z K, XUE B, CONG Y L, et al.Mathematical modeling and numerical solving of the optimal two-impulse rendezvous problem[J].Journal of Astronautics, 2010, 31(1):155-161(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.025
    [16]
    陈长青, 解永春.最优冲量交会的研究进展[J].空间控制技术与应用, 2008, 34(12):18-23.

    CHEN C Q, XIE Y C.Development of optimal impulsive rendezvous[J].Aerospace Control and Application, 2008, 34(12):18-23(in Chinese).
    [17]
    黄勇, 李小将, 张东来, 等.混合遗传算法在最优Lambert轨道转移设计中的应用[J].飞行力学, 2013, 31(3):269-272.

    HUANG Y, LI X J, ZHANG D L, et al.Application of hybrid genetic algorithm in optimal Lambert orbital transfer design[J].Flight Dynamics, 2013, 31(3):269-272(in Chinese).
  • Relative Articles

    [1]CAI L,XIAO Y,HAN H Z,et al. Experimental study on flow and heat transfer of hydrocarbon fuels in additive manufacturing channels at supercritical pressure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):881-891 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0120.
    [2]LI L Y,YANG R N,WANG Y,et al. CAP planning method based on elliptic fitting of optimal detection routes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):293-302 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0978.
    [3]LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0820.
    [4]LU Zheng-liang, XIE Hao-dong, NI Tao, XU Hao. Research on attitude compound control technology for Micro/Nanosatellite maneuvering segment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0688
    [5]YANG J,ZHANG C. Semantic segmentation of point clouds by fusing dual attention mechanism and dynamic graph convolution[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2984-2994 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0775.
    [6]FU Honglan, ZHANG Hao. Close robust rendezvous on distant retrograde orbits[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0560
    [7]YU Xiaohai, QU Yaobin, SHI Peng. A Task Planning Method for Space-Based Observation of Large-Scale LEO Target Set[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0649
    [8]CHANG Z N,HU M H,ZHANG Y,et al. A multi-objective optimal control trajectory optimization method for aircraft under wind influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3521-3531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0836.
    [9]LI Dan, CUI Wen-feng, CHEN Gui-peng. ptimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0356
    [10]XIAHOU Chao, ZHOU Hao, CHEN Wanchun. Cooperative Optimal Analytical Guidance Method Considering Time-Varying Speed and Information Sharing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0707
    [11]HU J,GENG H,WANG D S,et al. Characteristic analysis and diagnosis of double charged ions of continuous variable-thrust ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3303-3310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0078.
    [12]WANG Chao, LI Wen-qing, SUN Shi-lei, XU Chen-yang. Muti-aircraft low-carbon trajectories cooperative planning for point merge operation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0575
    [13]LIU Wei-rong, WEI Zi-feng, JIN Zhen-bing, MENG Jia-hao, WANG Xing-kun, ZHANG Hao-chen. Iterative optimal impedance-based human-robot physical interaction control method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0314
    [14]LI Tian, ZHAO You-qun, XU Tao, SHEN Ya-wei, LIN Fen. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0238
    [15]WU M G,BI K X,WEN X X,et al. Conflict resolution strategy based on optimal dominating set of flight conflict networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):242-253 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0233.
    [16]BAN Huan-heng, ZHOU Cong, YAN Xiao-dong. Rapid Trajectory Planning Method for Lunar Direct Ascent and Rendezvous under Emergency Condition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0160
    [17]DENG Xiao-long, GAO Xian-zhong, YANG Min-sheng, WANG Yu-jie, ZHU Bing-jie. Energy influence study of stages in cruise profile for near space solar powered unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0789
    [18]HU Yan-peng, GUO Jin, ZHOU Meng, WANG Xiang-yu. Research on energy management of solar powered UAV based on energy closed-loop[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0749
    [19]ZHANG Zhiwen, DU Wenjie, LIANG Junfei, ZHANG Yangang, WU Yawen. Layered control of hybrid power loader based on fuel cell[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2165-2176. doi: 10.13700/j.bh.1001-5965.2021.0099
    [20]XIANG Yan, LI Wen, GUO Zhibin, ZHANG Jin, LU Shanfu. Research progress on key materials of phosphoric acid doped high-temperature proton exchange membrane fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1791-1805. doi: 10.13700/j.bh.1001-5965.2022.0575
  • Cited by

    Periodical cited type(7)

    1. 杨慧婷,王庆辉. 基于ASAPSO混合算法的双脉冲变轨拦截轨迹优化. 空间控制技术与应用. 2025(01): 75-84 .
    2. 余静,彭晓东,谢文明,覃润楠,王有亮. 基于数据生成和深度神经网络的空间非合作目标行为意图识别. 空间科学学报. 2024(06): 1134-1146 .
    3. 林思颖,康国华,魏建宇,田士瑛. 采用二次修正的立方星拦截仿真研究. 航天控制. 2023(01): 67-73 .
    4. 周楷程,余红英,樊永生. Lambert交会中转移时间的优化及应用. 航天控制. 2023(03): 19-25 .
    5. 王义宇,罗宇航,徐田来,包为民,袁帅,张泽旭,李宸硕,胡志杰. 一种离散轨道数据约束下的地月三体轨道脉冲转移算法. 深空探测学报(中英文). 2023(05): 481-493 .
    6. 刁华飞,尚晓龙,王培,芦雪. 高轨卫星远程抵近轨道优化研究. 上海航天(中英文). 2022(02): 15-23 .
    7. 赵蒙,端军红,王明宇,殷双斌. 大气层外弹道导弹中段拦截弹道规划. 兵工学报. 2022(07): 1589-1595 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views(1313) PDF downloads(1085) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return