Volume 44 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
ZHANG Jianjun, LIU Weidong, GAO Li'e, et al. Adaptive bilateral control for underwater manipulator in uncertainty teleoperation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753(in Chinese)
Citation: ZHANG Jianjun, LIU Weidong, GAO Li'e, et al. Adaptive bilateral control for underwater manipulator in uncertainty teleoperation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753(in Chinese)

Adaptive bilateral control for underwater manipulator in uncertainty teleoperation

doi: 10.13700/j.bh.1001-5965.2017.0753
Funds:

National Natural Science Foundation of China 61473224

National Key R&D Program of China 2016YFC0301700

the Fundamental Research Funds for the Central Universities 3102017OQD069

More Information
  • Corresponding author: LIU Weidong, E-mail: liuwd@nwpu.edu.cn
  • Received Date: 05 Dec 2017
  • Accepted Date: 16 Mar 2018
  • Publish Date: 20 Sep 2018
  • An adaptive bilateral control strategy is proposed for the uncertainty of the mathematical model and external disturbances during the teleoperation of underwater manipulator. A reference adaptive impedance control law based on the nominal model is designed for the uncertainty of the parameters of the master manipulator model and the external disturbance. The reference position of the expected model is adjusted by the deviation between the force of operator and the slave manipulator, and the model uncertainty is compensated by the adaptive control law. Aimed at the uncertainty of slave manipulator, the adaptive compensation is achieved by the radial basis function (RBF) neural network, and the approximation deviation is eliminated by the design of the sliding mode variable structure controller and the robust adaptive controller, which satisfies the position tracking of the slave manipulator to the master manipulator. The tracking performance and global stability are proved by Lyapunov function, and the asymptotic convergence of force-position tracking is guaranteed. The results show that the overall controller has good force-position tracking ability under the conditions of model uncertainty and external disturbance. The whole system is stable and feasible, and has robustness and adaptive control ability.

     

  • loading
  • [1]
    LI Y, JOHANSSON R, LIU K, et al.Guaranteed cost control design for delayed teleoperation systems[J].Journal of the Franklin Institute, 2015, 352(11):5085-5105. doi: 10.1016/j.jfranklin.2015.08.011
    [2]
    贾鹤鸣, 张利军, 齐雪, 等.基于神经网络的水下机器人三维航迹跟踪控制[J].控制理论与应用, 2012, 29(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201207007

    JIA H M, ZHANG L J, QI X, et al.Three-dimensional path tracking control for autonomous underwater vehicle based on neural network[J].Control Theory & Applications, 2012, 29(7):56-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201207007
    [3]
    WANG H, XIE Y.Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics[J].Automatica, 2009, 45(9):2114-2119. doi: 10.1016/j.automatica.2009.05.011
    [4]
    张文辉, 齐乃明, 尹洪亮.基于滑模变结构的空间机器人神经网络跟踪控制[J].控制理论与应用, 2011, 28(9):1141-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101961448

    ZHANG W H, QI N M, YIN H L.Neural-network tracking control of space robot based on sliding-mode variable structure[J].Control Theory & Applications, 2011, 28(9):1141-1144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101961448
    [5]
    GANJEFAR S, REZAEI S, HASHEMZADEH F.Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay[J].Mechanical Systems and Signal Processing, 2017, 86:308-324. doi: 10.1016/j.ymssp.2016.09.023
    [6]
    LIU Y C, KHONG M H.Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics[J].IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2550-2562. doi: 10.1109/TMECH.2015.2388555
    [7]
    HOSSEINI S K, MOMENI H, JANABI S F, et al.A modified adaptive controller design for teleoperation systems[J].Robotics and Autonomous Systems, 2010, 58(5):676-683. doi: 10.1016/j.robot.2009.11.006
    [8]
    LIU X, TAVAKOLI M.Adaptive control of teleoperation systems with linearly and nonlinearly parameterized dynamic uncertainties[J].Journal of Dynamic Systems Measurement & Control, 2012, 134(2):194-203. http://cn.bing.com/academic/profile?id=a978f9bc6dbd2f71d080c1d2e2d69b86&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    CHOPRA N, SPONG M W, LOZANO R.Synchronization of bilateral teleoperators with time delay[J].Automatica, 2008, 44(8):2142-2148. doi: 10.1016/j.automatica.2007.12.002
    [10]
    NUN~O E, SARRAS I, BASAN~EZ L, et al.Control of teleoperators with joint flexibility, uncertain parameters and time-delays[J].Robotics and Autonomous Systems, 2014, 62(12):1691-1701. doi: 10.1016/j.robot.2014.08.003
    [11]
    HUA C C, YANG Y, GUAN X.Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay[J].Neuro Computing, 2013, 113(7):204-212. http://cn.bing.com/academic/profile?id=88c2b90e2171357ff8ee1b998d788f3c&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    WANG H.Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics[J].Automatica, 2013, 49(3):755-761. doi: 10.1016/j.automatica.2012.11.003
    [13]
    KIM B Y, AHN H S.A design of bilateral teleoperation systems using composite adaptive controller[J].Control Engineering Practice, 2013, 21(12):1641-1652. doi: 10.1016/j.conengprac.2013.08.013
    [14]
    SHARIFI M, BEHZADIPOUR S, VOSSOUGHI G.Nonlinear model reference adaptive impedance control for human-robot interactions[J].Control Engineering Practice, 2014, 32:9-27. doi: 10.1016/j.conengprac.2014.07.001
    [15]
    MENDOZA M, BONILLA I, GONZÁLEZ-GALVÁN E, et al.Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots[J].Computer Methods & Programs in Biomedicine, 2016, 123(C):54-67. http://cn.bing.com/academic/profile?id=96154a9b9fe00c9cfb07ede3a78f1c07&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    SHARIFI M, BEHZADIPOUR S, VOSSOUGHI G R.Model reference adaptive impedance control of rehabilitation robots in operational space[C]//IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics.Piscataway, NJ: IEEE Press, 2012: 1698-1703.
    [17]
    HSU C F, LIN C M, YEH R G.Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems[J].Applied Soft Computing Journal, 2013, 13(4):1620-1626. doi: 10.1016/j.asoc.2012.12.028
    [18]
    PAN Y, YU H, ER M J.Adaptive neural PD control with semiglobal asymptotic stabilization guarantee[J].IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(12):2264-2274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234920002
    [19]
    LONDHE P S, MOHAN S, PATRE B M, et al.Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator[J].Ocean Engineering, 2017, 139:1-13. doi: 10.1016/j.oceaneng.2017.04.030
    [20]
    张文辉, 齐乃明, 尹洪亮.自适应神经变结构的机器人轨迹跟踪控制[J].控制与决策, 2011, 26(4):597-600. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201104021

    ZHANG W H, QI N M, YIN H L.Neural-variable structure-based adaptive trajectory tracking control of robot manipulators[J].Control and Decision, 2011, 26(4):597-600(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201104021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(686) PDF downloads(445) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return