Volume 44 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
LU Chunguang, ZHOU Zhongliang, LIU Hongqiang, et al. Fighter zigzag maneuver target tracking algorithm using HCKS-EM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2004-2012. doi: 10.13700/j.bh.1001-5965.2018.0047(in Chinese)
Citation: LU Chunguang, ZHOU Zhongliang, LIU Hongqiang, et al. Fighter zigzag maneuver target tracking algorithm using HCKS-EM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2004-2012. doi: 10.13700/j.bh.1001-5965.2018.0047(in Chinese)

Fighter zigzag maneuver target tracking algorithm using HCKS-EM

doi: 10.13700/j.bh.1001-5965.2018.0047
Funds:

National Natural Science Foundation of China 61472443

More Information
  • Corresponding author: ZHOU Zhongliang.E-mail:zzl_panda@163.com
  • Received Date: 18 Jan 2018
  • Accepted Date: 13 Apr 2018
  • Publish Date: 20 Sep 2018
  • Motivated by identifying the turn rate of fighter zigzag maneuver under the background of colored measurement noise, the joint estimation and identification algorithm with colored measurement noise is proposed based on expectation maximization (EM) algorithm by considering the characteristics of the coupling between the target state and the turn rate. The colored noise whitening is realized by using the measurement difference scheme, and thus, the turn rate identification problem with colored measurement noise is transformed into the turn rate identification problem with one-step delayed state. The joint estimation and identification of both fighter zigzag maneuver target states and turn rate are achieved by EM algorithm:in the E-step, the target state posteriori estimation is achieved accurately using the high-degree cubature Kalman smoothers (HCKS) algorithm with colored measurement noise; in the M-step, the analytical identification result of turn rate is obtained by maximizing the conditional likelihood function. It is verified in the final simulation that the proposed algorithm performs better in terms of target state estimation and turn rate identification accuracy than the traditional augmentation method and interacting multi-model algorithm. Furthermore, the performance of the proposed algorithm is evaluated and analyzed from two aspects of window length and maximum number of iterations. The simulation results show that the larger the window length and the maximum number of iterations are, the higher the precision is.

     

  • loading
  • [1]
    宋华, 章新华, 许林周.基于离散隐马尔科夫模型的空中目标战术机动识别[J].仪器仪表学报, 2007, 28(4):588-592. http://d.old.wanfangdata.com.cn/Conference/6419027

    SONG H, ZHANG X H, XU L Z.Aerial combat maneuver identification based on discrete hidden Markov model[J].Chinese Journal of Scientific Instrument, 2007, 28(4):588-592(in Chinese). http://d.old.wanfangdata.com.cn/Conference/6419027
    [2]
    钟友武, 柳嘉润, 申功璋.自主近距空战中敌机的战术动作识别方法[J].北京航空航天大学学报, 2007, 33(9):1056-1059. doi: 10.3969/j.issn.1001-5965.2007.09.013

    ZHONG Y W, LIU J R, SHEN G Z.Recognition method for tactica maneuver of target in autonomous close-in air combat[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9):1056-1059(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.09.013
    [3]
    ROTH M, HENDEBY G, GUSTAFSSON F.EKF/UKF maneuvering target tracking using coordinatd turn models with polar/Cartesian velocity[C]//17th International Conference on Information Fusion (FUSION).Piscataway, NJ: IEEE Press, 2014: 1-8.
    [4]
    ARASARATNAM I, HAYKIN S.Cubature Kalman smoother[J].Automatica, 2011, 47(10):2245-2250. doi: 10.1016/j.automatica.2011.08.005
    [5]
    JIA B, XIN M, CHENG Y.High-degree cubature Kalman filter[J].Automatica, 2013, 49(2):510-518. doi: 10.1016/j.automatica.2012.11.014
    [6]
    黄伟平, 徐毓, 王杰.基于改进"当前"统计模型的转弯机动跟踪算法[J].控制与决策, 2011, 26(9):1412-1416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201109026

    HUANG W P, XU Y, WANG J.Algorithm based on modified current statistic mode fo turn maneuver[J].Control and Decision, 2011, 26(9):1412-1416(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201109026
    [7]
    SONG B, WANG X X, LIANG Y, et al.Analytical identification of system parameter nonlinearly coupled in dynamic transition matrix[C]//American Control Conference(ACC).2016: 1832-1837.
    [8]
    王小旭, 梁彦, 潘泉, 等.带有色量测噪声的非线性系统Unscented卡尔曼滤波器[J].自动化学报, 2012, 38(6):986-998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201784778

    WANG X X, LIANG Y, PAN Q, et al.Unscented Kalman filter for nonlinear systems with colored measurement noise[J].Acta Automatica Sinica, 2012, 38(6):986-998(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201784778
    [9]
    WANG X X, LIANG Y, PAN Q, et al.Nonlinear Gaussian smoothers with colored measurement noise[J].IEEE Trasactions on Automatic Control, 2015, 60(3):870-876. doi: 10.1109/TAC.2014.2337991
    [10]
    黄玉龙, 张勇刚, 李宁, 等.一种带有色量测噪声的非线性系统辨识方法[J].自动化学报, 2015, 41(11):1877-1892. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201511005

    HUANG Y L, ZHANG Y G, LI N, et al.An identification method for nonlinear systems with colored measurement noise[J].Acta Automatica Sinica, 2015, 41(11):1877-1892(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdhxb201511005
    [11]
    WANG X X, LIANG Y, PAN Q, et al.Nonlinear Gaussian smoothers with colored measurements noise[J].IEEE Transactions on Automatic Control, 2015, 60(3):870-876. doi: 10.1109/TAC.2014.2337991
    [12]
    NOBUHIRO Y.Parameter estimation of aircraft dynamics via unscented smoother with expectation-maximization algorithm[J].Journal of Guidance, Control, and Dynamics, 2011, 34(2):426-436. doi: 10.2514/1.51696
    [13]
    LAN H, LIANG Y, YANG F, et al.Joint estimation and identification for stochastic systems with unknown inputs[J].IET Control Theory & Appications, 2013, 7(10):1377-1386. https://ieeexplore.ieee.org/abstract/document/6584842
    [14]
    SCHON T, WILLS A, NINNESS B.System identification of nonlinear state-space models[J].Automatica, 2011, 47(1):39-49. doi: 10.1016/j.automatica.2010.10.013
    [15]
    HUANG Y, ZHANG Y G, LI N, et al.Latency probability estimation of non-linear systems with one-step randomly delayed measurements[J].IET Control Theory & Appications, 2016, 10(7):843-852. doi: 10.1049/iet-cta.2015.1092
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(733) PDF downloads(442) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return