Volume 44 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
MEN Ping, DONG Shiyun, YAN Shixing, et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086(in Chinese)
Citation: MEN Ping, DONG Shiyun, YAN Shixing, et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086(in Chinese)

Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity

doi: 10.13700/j.bh.1001-5965.2018.0086
Funds:

National Key R & D Program of China 2016YFB1100205

National Key R & D Program of China 2017YFF0207905

National Natural Science Foundation of China 51705532

the Beijing Major Science and Technology Projects Z161100004916009

the Beijing Municipal Science and Technology Projects Z161100001516007

More Information
  • Corresponding author: DONG Shiyun, E-mail:syd422@sohu.com
  • Received Date: 08 Feb 2018
  • Accepted Date: 25 May 2018
  • Publish Date: 20 Nov 2018
  • Hardness is one of the important indexes of mechanical performance of materials, and employing ultrasonic nondestructive testing method for hardness evaluation faces many challenges now. In this paper, through setting up high-precision ultrasonic wave transmission time measurement system, the longitudinal wave propagation time in the thickness direction of different heat treated 45 steel specimens was measured by pulse reflected echo method, and the longitudinal wave velocity was calculated. Simultaneously, the gate signal measurement methods were changed, and the effects of different heat treatment and gate signal measurement methods on hardness evaluation by the longitudinal wave velocity were studied.On this basis, the mapping relationship among material hardness, microstructure and longitudinal wave velocity was obtained, and the calibration model for evaluating the hardness of 45 steel specimens by longitudinal wave velocity was established and verified. The hardness prediction error by the calibration model meets the error requirement of 10% for engineering application.

     

  • loading
  • [1]
    蔡鹏, 程玉华, 谢驰, 等.超声波技术用于零件表面硬度无损检测的研究[J].工具技术, 2007, 41(2):85-89. doi: 10.3969/j.issn.1000-7008.2007.02.024

    CAI P, CHENG Y H, XIE C, et al.Research on non-destructive detection of part surface hardness with ultrasonic technology[J].Tool Engineering, 2007, 41(2):85-89(in Chinese). doi: 10.3969/j.issn.1000-7008.2007.02.024
    [2]
    刘志军.金属基复合材料高温界面特性及耐磨性能研究[J].热加工工艺, 2016, 45(12):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444

    LIU Z J.High temperature interface properties and wear resistance of metal matrix composite[J].Hot Working Technology, 2016, 45(12):110-112(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444
    [3]
    BAO Y W, WANG W, ZHOU Y C.Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements[J].Acta Materialia, 2004, 52(18):5397-5404. doi: 10.1016/j.actamat.2004.08.002
    [4]
    ZHU L N, XU B S, WANG H D, et al.Determination of hardness of plasma-sprayed FeCrBSi coating on steel substrate by nanoindentation[J].Materials Science & Engineering A, 2010, 528(1):425-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d113adb3a97ca5a6550898923fcc7ea
    [5]
    萨殊利, 肖春燕, 朱衡君, 等.电涡流无损检测淬火钢轨踏面硬度定量分析[J].铁道学报, 2001, 23(3):33-36. doi: 10.3321/j.issn:1001-8360.2001.03.007

    SA S L, XIAO C Y, ZHU H J, et al.Quantitative analysis of quenched rail surface hardness by eddy current nondestructive testing[J].Journal of the China Railway Society, 2001, 23(3):33-36(in Chinese). doi: 10.3321/j.issn:1001-8360.2001.03.007
    [6]
    付强, 李世波.金属材料几种常见硬度的区别与联系[J].山东化工, 2016, 45(6):70-72. doi: 10.3969/j.issn.1008-021X.2016.06.026

    FU Q, LI S B.Difference and contact of metal materials several common hardness[J].Shandong Chemical Industry, 2016, 45(6):70-72(in Chinese). doi: 10.3969/j.issn.1008-021X.2016.06.026
    [7]
    ZENG W, WANG H, TIAN G, et al.Detection of surface defects for longitudinal acoustic waves by a laser ultrasonic imaging technique[J].Optik-International Journal for Light and Electron Optics, 2016, 127(1):415-419. doi: 10.1016/j.ijleo.2015.09.175
    [8]
    门平, 董世运, 康学良, 等.材料早期损伤的非线性超声诊断[J].仪器仪表学报, 2017, 38(5):1101-1118. doi: 10.3969/j.issn.0254-3087.2017.05.008

    MEN P, DONG S Y, KANG X L, et al.Material early damage diagnosis with nonlinear ultrasound[J].Chinese Journal of Scientific Instrument, 2017, 38(5):1101-1118(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.05.008
    [9]
    JIAO J, FAN Z, ZHONG F, et al.Application of ultrasonic methods for early detection of intergranular corrosion in austenitic stainless steel[J].Research in Nondestructive Evaluation, 2016, 27(4):193-203. doi: 10.1080/09349847.2015.1103922
    [10]
    CHEREPETSKAYA E B, KARABUTOV A A, MIRONOVA E A, et al.Contact laser-ultrasonic evaluation of residual stress[J].Applied Mechanics & Materials, 2016, 843(7):118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.843.118
    [11]
    LIU B, DONG S.Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function[J].Applied Acoustics, 2016, 101(8):98-103. http://www.sciencedirect.com/science/article/pii/S0003682X15002388
    [12]
    FREITAS V L D A, ALBUQUERQUE V H C D, SILVA E D M, et al.Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements[J].Materials Science & Engineering A, 2010, 527(16):4431-4437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceeb5f5ae6b397088ceec38d90ab472e
    [13]
    YU Z, LIU C, ZHANG F, et al.Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants[J].Ultrasonics, 2016, 69(3):243-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a066aae617b63be1736dbd234f60ce0c
    [14]
    邓雯, 杨建华, 张扬.基于孤立波的杨氏模量无损检测换能器研究[J].仪器仪表学报, 2017, 38(11):2762-2768. doi: 10.3969/j.issn.0254-3087.2017.11.018

    DENG W, YANG J H, ZHANG Y.HNSWs based transducers in measuring Young's modulus nondestructively[J].Chinese Journal of Scientific Instrument, 2017, 38(11):2762-2768(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.11.018
    [15]
    周玉.材料分析方法[M].北京:机械工业出版社, 2011:40-54.

    ZHOU Y.Material analysis method[M].Beijing:Machinery Industry Press, 2011:40-54(in Chinese).
    [16]
    ROSE J L.固体中的超声波[M].何存富, 吴斌, 王秀彦, 译.北京: 科学出版社, 2004: 242-247.

    ROSE J L.Ultrasonic waves in solid media[M].HE C F, WU B, WANG X Y, translated.Beijing: Science Press, 2004: 242-247(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(597) PDF downloads(446) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return