Volume 44 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
WANG Chunlei, ZHAO Qi, QIN Xiaoli, et al. Life prediction method of lithium battery based on improved relevance vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1998-2003. doi: 10.13700/j.bh.1001-5965.2018.0181(in Chinese)
Citation: WANG Chunlei, ZHAO Qi, QIN Xiaoli, et al. Life prediction method of lithium battery based on improved relevance vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1998-2003. doi: 10.13700/j.bh.1001-5965.2018.0181(in Chinese)

Life prediction method of lithium battery based on improved relevance vector machine

doi: 10.13700/j.bh.1001-5965.2018.0181
More Information
  • Corresponding author: ZHAO Qi.E-mail:zhaoqi@buaa.edu.cn
  • Received Date: 04 Apr 2018
  • Accepted Date: 11 May 2018
  • Publish Date: 20 Sep 2018
  • Lithium batteries have the advantages of light weight and safety, long cycle life, and good safety performance. As a widely-used energy storage power supply, lithium battery health management and life prediction are hot topics both at home and abroad. Lithium battery life assessment methods and prediction models were established. Battery decay models were established based on experimental historical data to evaluate the working status of the entire battery, and the equipment was maintained and replaced in time to ensure stable battery operation. In this paper, the kernel function of the relevance vector machine (RVM) was mainly improved, the performance of the relevance vector machine was optimized, the lithium battery life prediction bias was reduced, and the prediction accuracy was improved.

     

  • loading
  • [1]
    张卓识.锂离子电池建模与故障预测方法研究[D].大连: 大连海事大学, 2016.

    ZHANG Z S.Study of lithium-ion battery modeling and prognostics method[D].Dalian: Maritime Affairs University of Dalian, 2016(in Chinese).
    [2]
    朱亮标.基于数据驱动的锂离子电池剩余寿命预测模型及软件实现[D].广州: 华南理工大学, 2014.

    ZHU L B.Remaining life prediction model and Software implementation for lithium-ion battery based on data-driven[D].Guangzhou: Institutes of Technology of South China, 2014(in Chinese).
    [3]
    艾力, 房红征, 于功敬, 等.基于数据驱动的卫星锂离子电池寿命预测方法[J].计算机测量与控制, 2015, 23(4):1262-1265. doi: 10.3969/j.issn.1671-4598.2015.04.059

    AI L, FANG H Z, YU G J, et al.Research on data-driven life prediction methods of satellite lithium-ion battery[J].Computer Measurement & Control, 2015, 23(4):1262-1265(in Chinese). doi: 10.3969/j.issn.1671-4598.2015.04.059
    [4]
    郑方丹.基于数据驱动的多时间尺度锂离子电池状态评估技术研究[D].北京: 北京交通大学, 2017.

    ZHENG F D.Multi-time scale state estimation of lithium-ion batteries using data driven method[D].Beijing: Beijing Jiaotong University, 2017(in Chinese).
    [5]
    赵春辉, 张燚.相关向量机分类方法的研究进展与分析[J].智能系统学报, 2012, 7(4):294-301. doi: 10.3969/j.issn.1673-4785.201112019

    ZHAO C H, ZHANG Y.Research progress and analysis on methods for classification of RVM[J].CAAI Transactions on Intelligent Systems, 2012, 7(4):294-301(in Chinese). doi: 10.3969/j.issn.1673-4785.201112019
    [6]
    杨树仁, 沈洪远.基于相关向量机的机器学习算法研究与应用[J].计算机技术与自动化, 2010, 29(1):43-47. http://d.old.wanfangdata.com.cn/Periodical/jsjsyzdh201001013

    YANG S R, SHEN H Y.Research on data-driven life prediction methods of satellite lithium-ion battery[J].Computer Measurement & Control, 2010, 29(1):43-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjsyzdh201001013
    [7]
    TIPPING M.The relevance vector machine, 2000[C]//Advances in Neural Information Processing Systems.Cambridge: MIT Press, 2000: 652-658.
    [8]
    黄海.锂离子动力电池老化特性研究与循环寿命预测[D].济南: 山东大学, 2016.

    HUANG H.Research on aging performances and cycle-life predictions of Li-ion battery[D].Jinan: Shandong University, 2016(in Chinese).
    [9]
    王立昆, 杨新峰.一种基于RVM回归的分类方法[J].电子科技, 2011, 24(5):14-16. http://d.old.wanfangdata.com.cn/Periodical/dzkj201105005

    WANG L K, YANG X F.A classification method based on RVM regression[J].Electronic Science and Technology, 2011, 24(5):14-16(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkj201105005
    [10]
    周建宝.基于RVM的锂离子电池剩余寿命预测方法研究[D].哈尔滨: 哈尔滨工业大学, 2013: 20-23.

    ZHOU J B.Research on lithium-ion battery remaining useful life estimation with relevance vector machine[D].Harbin: Harbin Institute of Technology, 2013: 20-23(in Chinese).
    [11]
    杨柳, 张磊, 张少勋, 等.单核和多核相关向量机的比较研究[J].计算机工程, 2010, 36(12):195-197. http://d.old.wanfangdata.com.cn/Periodical/jsjgc201012067

    YANG L, ZHANG L, ZHANG S X, et al.Comparison research of single kernel and multi-kernel relevance vector machine[J].Computer Engineering, 2010, 36(12):195-197(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjgc201012067
    [12]
    豆金昌.锂离子电池健康评估及剩余使用寿命预测方法研究[D].南京: 南京航空航天大学, 2013.

    DOU J C.Health assessment and remaining useful life prediction of Li-ion battery[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [13]
    李晗, 萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策, 2011, 26(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201609001

    LI H, XIAO D Y.Survey on data fault diagnosis methods[J].Control and Decision, 2011, 26(1):1-9(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdhxb201609001
    [14]
    张金, 魏影, 韩裕生, 等.一种改进的锂离子电池剩余寿命预测算法[J].电子技术应用, 2015, 41(8):110-112. http://d.old.wanfangdata.com.cn/Periodical/dzjsyy201508032

    ZHANG J, WEI Y, HAN Y S, et al.An improved particle filter algorithm for lithium-ion battery remaining useful life prediction[J].Application of Electronic Technique, 2015, 41(8):110-112(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzjsyy201508032
    [15]
    李柱.锂离子电池寿命预测方法研究[D].淮南: 安徽理工大学, 2017.

    LI Z.Study on remaining useful life prediction method for lithium-ion batteries[D].Huainan: Anhui University of Science and Technology, 2017(in Chinese).
    [16]
    杨丽.基于模型驱动的锂离子电池剩余寿命预测方法研究[D].哈尔滨: 哈尔滨工业大学, 2016.

    YANG L.Research on lithium-ion battery rul model driven prognosis method[D].Harbin: Harbin Institute of Technology, 2016(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views(957) PDF downloads(650) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return