Volume 44 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
CUI Yongcan, SONG Ting, SUN Jun, et al. Optimization design of compliant joints of bionic adhesive device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2660-2666. doi: 10.13700/j.bh.1001-5965.2018.0342(in Chinese)
Citation: CUI Yongcan, SONG Ting, SUN Jun, et al. Optimization design of compliant joints of bionic adhesive device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2660-2666. doi: 10.13700/j.bh.1001-5965.2018.0342(in Chinese)

Optimization design of compliant joints of bionic adhesive device

doi: 10.13700/j.bh.1001-5965.2018.0342
More Information
  • Corresponding author: CHU Zhongyi, E-mail: chuzy@buaa.edu.cn
  • Received Date: 08 Jun 2018
  • Accepted Date: 27 Jul 2018
  • Publish Date: 20 Dec 2018
  • In order to improve the adaptability of the bionic adhesive device to target motion parameters when capturing non-cooperative objects in space, a 3-degree-of-freedom series compliant joint is designed. When the joints are embedded in the system, the device can passively adapt to the moving object posture through the coordinated movement of the joints. Meanwhile, the kinetic energy of the target is gradually reduced based on the joints' compliant mechanism consisting of springs, dampers and their energy dissipation function. In order to verify and optimize the joints' performance, a kinematics and dynamics model are established for bionic adhesive device's capture process based on compliant joints using virtual prototyping software ADAMS. The effects of spring stiffness coefficient and damping coefficient on the capture state of non-cooperative objects in the three groups of compliant joints are analyzed. By the ADAMS and iSIGHT co-simulation method, a multi-island genetic algorithm is used to optimize the spring stiffness and damping coefficient of compliant joints. Through parameter optimization, the energy dissipation effect of the bionic adhesive device compliant joints is improved. The motion parameters of the target that can be captured reach the specified envelope range.

     

  • loading
  • [1]
    王超, 董正宏, 尹航, 等.空间目标在轨捕获技术研究综述[J].装备学院学报, 2013, 24(4):63-66. doi: 10.3783/j.issn.2095-3828.2013.04.016

    WANG C, DONG Z H, YIN H, et al.Research summarizing of on-orbit oapture technology for space target[J].Journal of Academy of Equipment, 2013, 24(4):63-66(in Chinese). doi: 10.3783/j.issn.2095-3828.2013.04.016
    [2]
    陈罗婧, 傅丹膺, 袁春柱, 等.仿生壁虎微纳米黏附阵列的空间应用[J].航天器环境工程, 2013, 30(6):616-622. doi: 10.3969/j.issn.1673-1379.2013.06.010

    CHEN L J, FU D Y, YUAN C Z, et al.Biomimetic gecko micro/nano-structure adhesive array in space application[J].Spacecraft Environment Engineering, 2013, 30(6):616-622(in Chinese). doi: 10.3969/j.issn.1673-1379.2013.06.010
    [3]
    张昊.大壁虎运动行为研究及仿壁虎机器人研制[D].南京: 南京航空航天大学, 2010: 7-11. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011291444.htm

    ZHANG H.Research on gecko's moving behavior and developing gecko-like robot[D].Nanjing: Nanjing University of Aeronautic and Astronautics, 2010: 7-11(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1011291444.htm
    [4]
    HAWKES E W, EASON E V, ASBECK A T, et al.The gecko's toe:Scaling directional adhesives for climbing applications[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(2):518-526. doi: 10.1109/TMECH.2012.2209672
    [5]
    HAWKES E W, CHRISTENSEN D L, EASON E V, et al.Dynamic surface grasping with directional adhesion[C]//IEEE International Conference on Intelligent Robots and Systems.Piscataway, NJ: IEEE Press, 2013, 8215(2): 5487-5493. https://www.researchgate.net/publication/261353633_Dynamic_surface_grasping_with_directional_adhesion
    [6]
    ESTRADA M A, JIANG H, NOLL B, et al.Force and moment constraints of a curved surface gripper and wrist for assistive free flyers[C]//IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2017: 2824-2830. http://www.researchgate.net/publication/318688860_Force_and_moment_constraints_of_a_curved_surface_gripper_and_wrist_for_assistive_free_flyers
    [7]
    JIANG H, HAWKES E W, FULLER C, et al.A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J].Science Robotics, 2017, 2(7):n4545. doi: 10.1126/scirobotics.aan4545
    [8]
    叶家宇.空间仿生附着机构的设计与实现[D].北京: 北京工业大学, 2017: 25-41.

    YE J Y.Design and implementation of spatial biomimetic adhesive device[D].Beijing: Beijing University of Technology, 2017: 25-41(in Chinese).
    [9]
    崔晶, 楚中毅, 叶家宇, 等.一种基于复合恒力弹簧加载的仿生干黏附机构: 2016108360112[P].2017-03-15.

    CUI J, CHU Z Y, YE J Y, et al.A biomimetic dry adhesion mechanism based on composite constant force spring loading: 2016108360112[P].2017-03-15(in Chinese).
    [10]
    YE J Y, CHU Z Y, CUI J.Optimization design of microstroke table for gecko adhesives actuating[C]//IEEE International Conference on Nanotechnology.Piscataway, NJ: IEEE Press, 2017: 330-333.
    [11]
    HAWKES E W.Applying dry adhesives to the real world[D].Palo Alto: Stanford University, 2015: 7-9.
    [12]
    刘坤明, 徐国艳, 余贵珍.驾驶机器人机械腿动力学建模与仿真分析[J].北京航空航天大学学报, 2016, 42(8):1709-1714. http://bhxb.buaa.edu.cn/CN/abstract/abstract13712.shtml

    LIU K M, XU G Y, YU G Z.Dynamic modeling and simulation analysis of robot driver's mechanical legs[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1709-1714(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13712.shtml
    [13]
    KATO H.Anisotropic adhesion model for translational and rotational motion[C]//IEEE/SICE International Symposium on System Integration.Piscataway, NJ: IEEE Press, 2013: 385-391.
    [14]
    吴建云, 王春洁, 汪翰.月球着陆器模型参数修正[J].北京航空航天大学学报, 2013, 39(10):1366-1369. http://bhxb.buaa.edu.cn/CN/abstract/abstract12754.shtml

    WU J Y, WANG C J, WANG H.Model parameters updating of lunar lander[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1366-1369(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12754.shtml
    [15]
    赖宇阳, 姜欣.Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社, 2012:139-140.

    LAI Y Y, JIANG X.Isight parameter optimization theory and example explanation[M].Beijing:Beihang University Press, 2012:139-140(in Chinese).
    [16]
    赵德建, 王延奎, 周平, 等.基于多岛遗传算法的二维翼型吸气减阻优化[J].北京航空航天大学学报, 2015, 41(5):941-946. http://bhxb.buaa.edu.cn/CN/Y2015/V41/I5/941

    ZHAO D J, WANG Y K, ZHOU P, et al.Optimization of drag-reduction by suction using multi-island genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):941-946(in Chinese). http://bhxb.buaa.edu.cn/CN/Y2015/V41/I5/941
    [17]
    张鼎逆, 刘毅.基于改进遗传算法和序列二次规划的再入轨迹优化[J].浙江大学学报(工学版), 2014, 48(1):161-167. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201401025.htm

    ZHANG D N, LIU Y.Reentry trajectory optimization based on improved genetic algorithm and sequential quadratic programming[J].Journal of Zhejiang University(Engineering Science), 2014, 48(1):161-167(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201401025.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views(677) PDF downloads(491) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return