Volume 45 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
JIANG Xiaoming, LIU Qiang. Low-complexity fast SIFT feature extraction based on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 804-810. doi: 10.13700/j.bh.1001-5965.2018.0438(in Chinese)
Citation: JIANG Xiaoming, LIU Qiang. Low-complexity fast SIFT feature extraction based on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 804-810. doi: 10.13700/j.bh.1001-5965.2018.0438(in Chinese)

Low-complexity fast SIFT feature extraction based on FPGA

doi: 10.13700/j.bh.1001-5965.2018.0438
Funds:

National Natural Science Foundation of China 61574099

More Information
  • Corresponding author: LIU Qiang, E-mail: qiangliu@tju.edu.cn
  • Received Date: 23 Jul 2018
  • Accepted Date: 19 Oct 2018
  • Publish Date: 20 Apr 2019
  • Scale invariant feature transform (SIFT) algorithm is widely used in the field of computer vision because of its excellent robustness. In order to solve the problem of low real-time performance of computation-intensive SIFT algorithm on CPU, a fast SIFT hardware architecture is proposed based on field programmable gate array (FPGA), with reduced complexity by optimizing the feature descriptor extraction part of the algorithm. By reducing the bit width of gradient information (including gradient amplitude and gradient direction), optimizing the generation of the Gauss weight coefficients, simplifying the calculation of the three linear interpolation coefficients and simplifying the computation process of the histogram index of the gradient amplitude, the proposed design avoids complex computations such as exponent, trigonometric function and multiplication, and reduces the complexity of hardware architecture and hardware resource consumption. The experimental results show that the proposed low-complexity fast SIFT hardware architecture can speed up by about 200 times compared to the software implementation. Compared with the related research, the speed is improved by 3 times and the stability of the feature descriptor is increased by more than 18%.

     

  • loading
  • [1]
    王亭亭, 蔡志浩, 王英勋.无人机室内视觉/惯导组合导航方法[J].北京航空航天大学学报, 2018, 44(1):176-186. http://bhxb.buaa.edu.cn/CN/abstract/abstract14229.shtml

    WANG T T, CAI Z H, WANG Y X.Integrated vision/inertial navigation method of UAVs in indoor environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1):176-186(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14229.shtml
    [2]
    LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025429678/
    [3]
    JIANG J, LI X, ZHANG G.SIFT hardware implementation for real-time image feature extraction[J].IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(7):1209-1220. doi: 10.1109/TCSVT.2014.2302535
    [4]
    MA W, WEN Z, WU Y, et al.Remote sensing image registration with modified SIFT and enhanced feature matching[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(1):3-7. doi: 10.1109/LGRS.2016.2600858
    [5]
    LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 3431-3440.
    [6]
    HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 770-778.
    [7]
    VIJAY K B G, CARNEIRO G, REID I.Learning local image descriptors with deep siamese and triplet convolutional networks by minimizing global loss functions[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 5385-5394.
    [8]
    王琳, 刘强.基于局部特征的多目标图像分割算法[J].激光与光电子学进展, 2018, 55(6):061002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201806014

    WANG L, LIU Q.A multi-object image segmentation algorithm based on local features[J].Laser & Optoelectronics Progress, 2018, 55(6):061002(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201806014
    [9]
    HEYMANN S, MVLLER K, SMOLIC A, et al.SIFT implementation and optimization for general-purpose GPU[J].Media Culture & Society, 2007, 67(1):7-13.
    [10]
    ZHANG Q, CHEN Y, ZHANG Y, et al.SIFT implementation and optimization for multi-core systems[C]//IEEE International Symposium on Parallel and Distributed Processing.Piscataway, NJ: IEEE Press, 2008: 1-8.
    [11]
    LIU Q, LIU J, SANG R, et al.Fast neural network training on fpga using quasi-Newton optimization method[J].IEEE Transactions on Very Large Scale Integration Systems, 2018, 26(8):1575-1579. doi: 10.1109/TVLSI.2018.2820016
    [12]
    VOURVOULAKIS J, KALOMIROS J, LYGOURAS J.FPGA accelerator for real-time SIFT matching with RANSAC support[J].Microprocessors and Microsystems, 2017, 49:105-116. doi: 10.1016/j.micpro.2016.11.011
    [13]
    QASAIMEH M, SAGAHYROON A, SHANABLEH T.FPGA-based parallel hardware architecture for real-time image classification[J].IEEE Transactions on Computational Imaging, 2015, 1(1):56-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17ba7788fe2d7652ead05798b96179ac
    [14]
    VOURVOULAKIS J, KALOMIROS J, LYGOURAS J.Fully pipelined FPGA-based architecture for real-time SIFT extraction[J].Microprocessors and Microsystems, 2016, 40:53-73. doi: 10.1016/j.micpro.2015.11.013
    [15]
    CHIU L C, CHANG T S, CHEN J Y, et al.Fast SIFT design for real-time visual feature extraction[J].IEEE Transactions on Image Processing, 2013, 22(8):3158-3167. doi: 10.1109/TIP.2013.2259841
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views(737) PDF downloads(375) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return