Volume 45 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
WEI Yang, XU Haojun, XUE Yuan, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589(in Chinese)
Citation: WEI Yang, XU Haojun, XUE Yuan, et al. Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1088-1095. doi: 10.13700/j.bh.1001-5965.2018.0589(in Chinese)

Influence of ice accretion on leading edge of wings on stability and controllability of large aircraft

doi: 10.13700/j.bh.1001-5965.2018.0589
Funds:

National Basic Research Program of China 2015CB755800

National Natural Science Foundation of China 61503406

Civil Aircraft Special Research MJ-2015-F-019

More Information
  • Corresponding author: XUE Yuan, E-mail: szxy1986@163.com
  • Received Date: 17 Oct 2018
  • Accepted Date: 16 Nov 2018
  • Publish Date: 20 Jun 2019
  • Ice accretion on the wings can affect the operational characteristics and flight performance of the aircraft, posing a hazard to flight safety. Based on the experimental data, the typical ice shapes with different icing severity on the leading edge of wings are constructed. The high-precision numerical simulation method is used to obtain the aerodynamic data of the background aircraft due to ice accretion, and the aircraft six-degree-of-freedom nonlinear dynamics model is established. On this basis, an autopilot closed-loop simulation system with three modes, namely, pitch attitude hold mode, roll attitude hold mode and altitude hold mode, is designed. Through the open-loop simulation, the different severity of ice accretion effects on aircraft trimming characteristics, longitudinal long and short period modal and lateral modal are analyzed, and the differences of aircraft dynamic response under different severity of ice accretion are compared. By using the closed-loop simulation, the influence of ice accretion on the autopilot performance under three modes is studied. The simulation results show that the ice accretion has an adverse effect on the stability and controllability of aircraft, including trimming characteristics, modal characteristics and open-loop dynamic response characteristics of aircraft, and threatens the flight safety.

     

  • loading
  • [1]
    REEHORST A L, JR ADDY H E, COLANTONIO R O.Examination of icing induced loss of control and its mitigations: AIAA-2010-8140[R]. Reston: AIAA, 2010.
    [2]
    CEBECI T.Effects of environmentally imposed roughness on airfoil performance: NASA CR 179639[R]. Washington, D.C.: NASA, 1981.
    [3]
    BRAGG M B, GREGOREK G M.Wind tunnel investigation of airfoil performance degradation due to icing: AIAA-82-0582[R]. Reston: AIAA, 1982.
    [4]
    BRAGG M B, ZAGULI R J, GREGOREK G M.Wind tunnel evaluation of airfoil performance using simulated ice shapes: NASA CR 167960[R]. Washington, D.C.: NASA, 1982.
    [5]
    BRAGG M B, COIRIER W J.Detailed measurements of the flowfield in the vicinity of an airfoil with glaze ice: AIAA-85-0409[R]. Reston: AIAA, 1985.
    [6]
    BRAGG M B, COIRIER W J.Aerodynamic measurements of an airfoil with simulated glaze ice: AIAA-86-0484[R]. Reston: AIAA, 1986.
    [7]
    BRAGG M B, SPRING S A.An experimental study of the flowfield about an airfoil with glaze ice: AIAA-87-0100[R]. Reston: AIAA, 1987.
    [8]
    BRAGG M B, KHODADOUST A.Experimental measurements in a large separation bubble due to a simulated glaze ice accretion: AIAA-88-0116[R]. Reston: AIAA, 1988.
    [9]
    BRAG M B, KHODADOUST A.Effect of simulated glaze ice on a rectangular wing: AIAA-89-0750[R]. Reston: AIAA, 1989.
    [10]
    KHODADOUST A.A flow visualization study of the leading edge separation bubble on a NACA 0012 airfoil with simulated glaze ice[D]. Columbus: Ohio State University, 1987.
    [11]
    RANAUDO R J.Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions: AIAA-84-0179[R]. Reston: AIAA, 1984.
    [12]
    RANAUDO R J, MIKKELSEN K L, MCKNIGHT R C, et al.The measurement of aircraft performance and stability and control after flight through natural icing conditions: AIAA-86-9758[R]. Reston: AIAA, 1986.
    [13]
    POTAPCZUK M G, GERHART P M.Progress in the development of a Navier-Stokes solver for evaluation of iced airfoil performance: AIAA-85-0410[R]. Reston: AIAA, 1985.
    [14]
    POTAPCZUK M G.Navier-Stokes computations for a NACA 0012 airfoil with leading edge ice: AIAA-87-0101[R]. Reston: AIAA, 1987.
    [15]
    POTAPCZUK M G.Navier-Stokes analysis of airfoils with leading-edge ice accretions[D]. Akron: The University of Akron, 1989.
    [16]
    ZAMAN K B, POTAPCZUK M G.The low frequency oscillation in the flow over a NACA 0012 airfoil with an iced leading edge[M]//MUELLER T J.Low Reynolds number aerodynamics.Berlin: Springer-Verlag, 1989: 271-282.
    [17]
    HILTNER D W.A nonlinear aircraft simulation of ice contaminated tailplane stall[D]. Columbus: Ohio State University, 1998.
    [18]
    SIBILSKI K, LASEK M, LADYZYNSKA-KOZDRAS E, et al.Aircraft climbing flight dynamics with simulated ice accretion: AIAA-2004-4948[R]. Reston: AIAA, 2004.
    [19]
    CUNNINGHAM M A.A simplified icing model for simulation and analysis of dynamic effects[D]. Morgantown: West Virginia University, 2012.
    [20]
    王明丰, 王立新, 黄成涛.积冰对飞机纵向操稳特性的量化影响[J].北京航空航天大学学报, 2008, 34(5):592-595. http://bhxb.buaa.edu.cn/CN/abstract/abstract9149.shtml

    WANG M F, WANG L X, HUANG C T.Computational effects of ice accretion on aircraft longitudinal stability and control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):592-595(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9149.shtml
    [21]
    袁坤刚, 曹义华.结冰对飞机飞行动力学特性影响的仿真研究[J].系统仿真学报, 2007, 19(9):1929-1932. doi: 10.3969/j.issn.1004-731X.2007.09.009

    YUAN K G, CAO Y H.Simulation of ice effect on aircraft flight dynamics[J]. Journal of System Simulation, 2007, 19(9):1929-1932(in Chinese). doi: 10.3969/j.issn.1004-731X.2007.09.009
    [22]
    蒋天俊.结冰对飞机飞行性能影响的研究[D].南京: 南京航空航天大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10287-2009054739.htm

    JIANG T J.Study on the effect of icing on aircraft flight performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2009054739.htm
    [23]
    王起达.结冰后飞机的纵向稳定性和操纵性研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-2010081957.htm

    WANG Q D.Study on longitudinal stability and maneuverability of aircraft after icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2010081957.htm
    [24]
    张智勇.结冰飞行动力学特性与包线保护控制律研究[D].南京: 南京航空航天大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10287-2006118911.htm

    ZHANG Z Y.Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-2006118911.htm
    [25]
    邵元培, 车竞, 丁娣.大飞机机翼结冰对飞行动力学特性影响研究[J].飞行力学, 2018, 36(1):12-15. http://d.old.wanfangdata.com.cn/Periodical/fxlx201801003

    SHAO Y P, CHE J, DING D.Study on the influence of wing icing on flight dynamics characteristics of large aircraft[J]. Flight Dynamics, 2018, 36(1):12-15(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201801003
    [26]
    BRAGG M B, HUTCHISON T, MERRET J.Effect of ice accretion on aircraft flight dynamics: AIAA-2000-0360[R]. Reston: AIAA, 2000.
    [27]
    SONNEVELDT L.Nonlinear F-16 model description[R]. Delft: Delft University of Technology, 2010.
    [28]
    刘世前.现代飞机飞行动力学与控制[M].上海:上海交通大学出版社, 2014:145-150.

    LIU S Q.Flight dynamics and control of modern air-crafts[M]. Shanghai:Shanghai Jiao Tong University Press, 2014:145-150(in Chinese).
    [29]
    US Air Force.US military specification: Flying qualities of piloted airplanes: MIL-F-8785C[S]. Philadelphia: Naval Publications and Form Center, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(766) PDF downloads(734) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return