Volume 45 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
SHI Yayun, GUO Bin, LIU Qian, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592(in Chinese)
Citation: SHI Yayun, GUO Bin, LIU Qian, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592(in Chinese)

Hybrid laminar flow optimization design from energy view

doi: 10.13700/j.bh.1001-5965.2018.0592
Funds:

National Basic Research Program of China 2014CB744804

More Information
  • Corresponding author: BAI Junqiang, E-mail: junqiang@nwpu.edu.cn
  • Received Date: 17 Oct 2018
  • Accepted Date: 11 Jan 2019
  • Publish Date: 20 Jun 2019
  • For decreasing the drag and lowering the energy consumption for the hybrid laminar flow design correctly, the optimization system, whose object can be set as minimum energy cost, is built by correlating the relationship of suction control power consumption and drag. The optimization system includes the free freedom deformation (FFD) parameterization, the compact radial basis function (RBF) dynamic mesh method, the improved differential evolution (DE), and the high-fidelity Reynolds averaged Navier-Stokes (RANS) solver, which couples with the eN transition prediction method. For the infinite spanwise wing with 25° sweep angle, there are two optimizations:one is the uniform suction with minimum drag object; one is the distributed suction with minimum energy consumption object. At Reynolds number 10×106, the optimization results with minimum power consumption can obtain the same drag coefficient benefit with 29.1% decrease. The transition location is extended by 18% chord on the upper surface, while 15% chord on the lower surface. The power consumption is reduced by 1.7%. At Reynolds number 20×106, the distributed suction result can get more benefit than the uniform suction. The drag is reduced by 41.3% compared with the original configuration, which is improved by 4.5% compared with uniform suction dirstibution. The transition locations are extended by 52% chord on the upper surface and 14% chord on the lower surface. The suction power consumption is reduced by 8.14%. Thus, the optimization results show that the proposed hybrid laminar flow optimization method from energy view is reliable.

     

  • loading
  • [1]
    CAMPBELL R L, MICHELLE N L.Natural laminar flow design for wings with moderate sweep: AIAA.2016-4326[R].Reston: AIAA, 2016.
    [2]
    SCHRAUF G.Status and perspectives of laminar flow[J].The Aeronautical Journal, 2005, 109(1102):639-644. doi: 10.1017/S000192400000097X
    [3]
    SCHRAUF G.The need of large-scale HLFC testing in europe[EB/OL].(2013)[2018-10-17].http://www.aflonext.eu/files/pdf/schrauf_2013_HLFC_research-needs_v2.pdf.
    [4]
    BECK N.Drag reduction by laminar flow control[J].Energies, 2018, 11(1):252. doi: 10.3390/en11010252
    [5]
    朱自强, 鞠胜军, 吴宗成.层流流动主/被动控制技术[J].航空学报, 2016, 37(7):2065-2090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201607003

    ZHU Z Q, JU S J, WU Z C.Laminar flow active/passive control technology[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201607003
    [6]
    SHI Y Y, BAI J Q, HUA J, et al.Numerical analysis and optimization of boundary layer suction on airfoils[J].Chinese Journal of Aeronautics, 2015, 28(2), 357-367. doi: 10.1016/j.cja.2015.02.011
    [7]
    KRISHNAN K S G, BERTRAM O, SEIBEL O.Review of hybrid laminar flow control systems[J].Progress in Aerospace Sciences, 2017, 93:24-52. doi: 10.1016/j.paerosci.2017.05.005
    [8]
    王菲, 王强, 郭辉, 等.升华法的后掠翼混合层流控制研究[J].实验流体力学, 2010, 24(3):54-58. doi: 10.3969/j.issn.1672-9897.2010.03.011

    WANG F, WANG Q, GUO H, et al.Investigation of HLFC on swept wing based on sublimation technique[J].Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese). doi: 10.3969/j.issn.1672-9897.2010.03.011
    [9]
    RISSE K, STUMPF E.Conceptual aircraft design with hybrid laminar flow control[J].CEAS Aeronautical Journal, 2014, 5(3):333-343. doi: 10.1007/s13272-014-0111-6
    [10]
    杨体浩, 白俊强, 史亚云, 等.考虑吸气分布影响的HLFC机翼优化设计[J].航空学报, 2017, 38(12):121158. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712001

    YANG T H, BAI J Q, SHI Y Y, et al.Optimization design for HLFC wings considering influence of suction distribution[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201712001
    [11]
    杨一雄, 杨体浩, 白俊强, 等.后掠翼优化设计的若干问题[J].航空学报, 2018, 39(1):121448. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801013

    YANG Y X, YANG T H, BAI J Q, et al.Problems in optimization design of HLFC sweep wing[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201801013
    [12]
    XU J K, FU Z Y, BAI J Q.Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J].Aerospace Science and Technology, 2018, 80:221-231. doi: 10.1016/j.ast.2018.07.007
    [13]
    SHI Y Y, GROSS R, MADER C A, et al.Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations AIAA-2018-0819[R].Reston: AIAA, 2018.
    [14]
    CEBECI T.Stability and yransition:Theory and application[M].Berlin:Springer, 2004.
    [15]
    BROADHURST M S, SHERWIN S J.The parabolised stability equations for 3D-flows:Implementation and numerical stability[J].Applied Numerical Mathematics, 2008, 58(7):1017-1029. doi: 10.1016/j.apnum.2007.04.016
    [16]
    JUNIPER M P, HANIFI A, THEOFILIS V.Modal stability theorylecture notes from the flow-nordita summer school on advanced instability methods for complex flows[J].Applied Mechanics Reviews, 2014, 66(2):024804. doi: 10.1115/1.4026604
    [17]
    SENGUPTA T K, CHATURVEDI V, KUMAR P, et al.Computation of leading edge contamination[J].Computers & Fluids, 2004, 33(7):927-951. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2edfe0bfe486f7131fb93774b0e7b4f0
    [18]
    SCHRAUF G, PERRAUD J, VITIELLO D, et al.Comparison of boundary-layer transition predictions using flight test data[J].Journal of Aircraft, 1998, 35(6):891-897. doi: 10.2514/2.2409
    [19]
    LAWSON S, CIARELLA A, WONG P W.Development of experimental techniques for hybrid laminar flow control in the ARA transonic wind tunnel[C]//2018 Applied Aerodynamics Conference, 2018.
    [20]
    XU J K, BAI J Q, QIAO L, et al.Fully local formulation of a transition closure model for transitional flow simulations[J].AIAA Journal, 2016, 54(10):3015-3023. doi: 10.2514/1.J054808
    [21]
    RIOUAL J L, NALSON P A, HACKENBERG P, et al.Optimum drag balance for boundary-layer suction[J].Journal of Aircraft, 1996, 33(2):435-438. doi: 10.2514/3.46956
    [22]
    PRALITS J O.Optimal design of natural and hybrid laminar flow control on wings[D].Stockholm: Royal Institute of Technology, 2003.
    [23]
    陈颂, 白俊强, 孙智伟, 等.基于DFFD技术的翼型气动优化设计[J].航空学报, 2014, 35(3):695-705. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010

    CHEN S, BAI J Q, SUN Z W, et al.Aerodynamjc optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010
    [24]
    康忠良, 闫超.适用于混合网格的约束最小二乘重构方法[J].航空学报, 2012, 33(9):1598-1605. http://d.old.wanfangdata.com.cn/Periodical/hkxb201209005

    KANG Z L, YAN C.Constrainedleast-squares reconstruction method for mixed grids[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1598-1605(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201209005
    [25]
    唐得志, 王道波, 王建宏, 等.直接加权优化辨识中未知权重值的迭代选取[J].系统工程与电子技术, 2010, 35(11):2376-2383. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201311024

    TANG Z D, WANG D P, WANG J H, et al.Iterative selection of unknown weights in direct weight optimization identification[J].Systems Engineering and Electronics, 2010, 35(7):2376-2383(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201311024
    [26]
    杨体浩, 白俊强, 王丹, 等.考虑发动机干扰的尾吊布局后体气动优化设计[J].航空学报, 2014, 35(7):1836-1844. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407007

    YANG T H, BAI J Q, WANG D, et al.Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201407007
    [27]
    邓凯文, 陈海昕.基于差分进化和RBF响应面的混合优化算法[J].力学学报, 2017, 49(2):441-455. http://d.old.wanfangdata.com.cn/Periodical/lxxb201702020

    DENG K W, CHEN H X.Hybrid optimization algorithm based on differentical evolution and RBF response surface[J].Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2):441-455(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lxxb201702020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(7)

    Article Metrics

    Article views(619) PDF downloads(518) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return