Volume 45 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
TAN Wenlong, FAN Weijun, SHI Qiang, et al. Liquid morphology at edge of vertical rotating disc[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615(in Chinese)
Citation: TAN Wenlong, FAN Weijun, SHI Qiang, et al. Liquid morphology at edge of vertical rotating disc[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615(in Chinese)

Liquid morphology at edge of vertical rotating disc

doi: 10.13700/j.bh.1001-5965.2018.0615
Funds:

National Natural Science Foundation of China 51506003

More Information
  • Corresponding author: ZHANG Rongchun, E-mail: zhangrongchun@buaa.edu.cn
  • Received Date: 26 Oct 2018
  • Accepted Date: 29 Dec 2018
  • Publish Date: 20 Jun 2019
  • For finding how the gravity affects the liquid on the rotating disc, the liquid morphology at the edge of the vertical rotating disc was experimentally studied by high-speed photography. The results show that there are three liquid morphologies at the edge of the vertical rotating disc:column, film and column film entanglement, which is different with the three morphologies at the horizontal rotating disc edge:direct drop, column and film. The liquid morphology at the bottom of the vertical disc does not match the top one, and the film morphology does not occur at the bottom. When the mass flow rate is less than 24 g/s, the liquid shows column morphology at the bottom, and when the mass flow rate is greater than or equal to 30 g/s, the liquid shows column film entanglement morphology. When the mass flow rate is between 12 g/s and 21 g/s and the rotating speed is between 1 000 r/min and 2 100 r/min, the liquid film morphology appears at the top of the disc. The liquid morphology is column when the mass flow rate is less than 12 g/s; if the mass flow rate is greater than 12 g/s, it will be replaced by column film entanglement. Due to the influence of gravity, the liquid morphology at the vertical disc edge changes much more than the horizontal disc; when the mass flow rate is large enough, the rotating speed required to form the liquid column at the bottom of the disc is greatly increased.

     

  • loading
  • [1]
    GIANFRANCESCO A, TURCHIULI C, FLICK D, et al.CFD modeling and simulation of maltodextrin solutions spray drying to control stickiness[J].Food and Bioprocess Technology, 2010, 3(6):946-955. doi: 10.1007/s11947-010-0352-2
    [2]
    LI X H, ZONG L W, JIN X T.Recent progress of spray drying in China[J].Drying Technology, 1999, 17(9):1747-1757.
    [3]
    JIN Y, CHEN X D.A three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production[J].Drying Technology, 2009, 27(10):1018-1027. doi: 10.1080/07373930903203588
    [4]
    SENUMA Y, HILBORN J G.High speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization[J].Polymer Engineering and Science, 2002, 42(5):969-982. doi: 10.1002/(ISSN)1548-2634
    [5]
    SOMA T, KATAYAMA T, TANIMOTO J, et al.Liquid film flow on a high speed rotary bell-cup atomizer[J].International Journal of Multiphase Flow, 2015, 70:96-103. doi: 10.1016/j.ijmultiphaseflow.2014.11.013
    [6]
    ELLWOOD K R J, TARDIFF J L, ALAIE S M.A simplified analysis method for correlating rotary atomizer performance on droplet size and coating appearance[J].Journal of Coatings Technology and Research, 2014, 11(3):303-309. doi: 10.1007/s11998-013-9535-x
    [7]
    COLBERT S A, CAIRNCROSS R A.A discrete droplet transport model for predicting spray coating patterns of an electrostatic rotary atomizer[J].Journal of Electrostatics, 2006, 64(3-4):234-246. doi: 10.1016/j.elstat.2005.06.003
    [8]
    DOMNICK J, SCHEIBE A, YE Q.The simulation of the electrostatic spray painting process with high-speed rotary bell atomizers.Part Ⅰ:Direct charging[J].Particle & Particle Systems Characterization, 2005, 22(2):141-150. https://www.mendeley.com/catalogue/simulation-electrostatic-spray-painting-process-highspeed-rotary-bell-atomizers-part-i-direct-chargi/
    [9]
    DOMNICK J, SCHEIBE A, YE Q.The simulation of electrostatic spray painting process with high-speed rotary bell atomizers.Part Ⅱ:External charging[J].Particle & Particle Systems Characterization, 2006, 23(5):408-416. http://www.deepdyve.com/lp/wiley/the-simulation-of-electrostatic-spray-painting-process-with-high-speed-sDSb1vXY7I
    [10]
    WANG D, LING X, PENG H.Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J].Applied Thermal Engineering, 2015, 84:437-447. doi: 10.1016/j.applthermaleng.2015.03.003
    [11]
    WANG D, PENG H, LING X.Ligament mode disintegration of liquid film at the rotary disk rim in waste heat recovery process of molten slag[J].Energy Procedia, 2014, 61:1824-1829. doi: 10.1016/j.egypro.2014.12.222
    [12]
    LIU J, YU Q, LI P, et al.Cold experiments on ligament formation for blast furnace slag granulation[J].Applied Thermal Engineering, 2012, 40:351-357. doi: 10.1016/j.applthermaleng.2012.01.063
    [13]
    MIZUOCHI T, AKIYAMA T, SHIMADA T, et al.Feasibility of rotary cup atomizer for slag granulation[J].ISIJ International, 2001, 41(12):1423-1428. doi: 10.2355/isijinternational.41.1423
    [14]
    ZHANG H, WANG H, ZHU X, et al.A review of waste heat recovery technologies towards molten slag in steel industry[J].Applied Energy, 2013, 112:956-966. doi: 10.1016/j.apenergy.2013.02.019
    [15]
    MORISHITA T.A development of the fuel atomizing device utilizing high rotational speed: ASME 81-GT-180[R].New York: ASME, 1981.
    [16]
    CHOI S M, JANG S H.Spray behavior of the rotary atomizer with in-line injection orifices[J].Atomization and Sprays, 2010, 20(10):863-875. doi: 10.1615/AtomizSpr.v20.i10
    [17]
    DAHM W J A, PATEL P R, LERG B H.Experimental visualizations of liquid breakup regimes in fuel slinger atomization[J].Atomization and Sprays, 2006, 16(8):933-944. doi: 10.1615/AtomizSpr.v16.i8
    [18]
    WERNER D.Fundamental analysis of liquid atomization by fuel slingers in small gas turbines: AIAA-2002-3183[R].Reston: AIAA, 2002.
    [19]
    TESKE M E, THISTLE H W, HEWITT A J, et al.Rotary atomizer drop size distribution database[J].Transactions of the ASABE, 2005, 48(3):917-921. doi: 10.13031/2013.18496
    [20]
    BAGHERPOUR A, MCLEOD I M, HOLLOWAY A G L.Droplet sizing and velocimetry in the wake of rotary-cage atomizers[J].Transactions of the ASABE, 2012, 55(3):759-772. doi: 10.13031/2013.41508
    [21]
    CRAIG I P, HEWITT A, TERRY H.Rotary atomiser design requirements for optimum pesticide application efficiency[J].Crop Protection, 2014, 66:34-39. doi: 10.1016/j.cropro.2014.08.012
    [22]
    GEBHARDT M R.Rotary disk atomization[J].Weed Technology, 1988, 1(2):106-113. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023727449/
    [23]
    MATSUMOTO S, SAITO K, TAKASHIMA Y.Phenomenal transition of liquid atomization from disk[J].Journal of Chemical Engineering of Japan, 1974, 7(1):13-19. doi: 10.1252-jcej.16.338/
    [24]
    TEUNOU E, PONCELET D.Rotary disc atomisation for microencapsulation applications-Prediction of the particle trajectories[J].Journal of Food Engineering, 2005, 71(4):345-353. https://www.sciencedirect.com/science/article/abs/pii/S0260877404005370
    [25]
    LIU J, YU Q, GUO Q.Experimental Investigation of liquid disintegration by rotary cups[J].Chemical Engineering Science, 2012, 73:44-50. doi: 10.1016/j.ces.2012.01.010
    [26]
    AHMED M, YOUSSEF M S.Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J].Chemical Engineering Science, 2014, 107:149-157. doi: 10.1016/j.ces.2013.12.004
    [27]
    WANG D, LING X, PENG H, et al.Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J].Industrial & Engineering Chemistry Research, 2016, 34(55):9267-9275. https://www.onacademic.com/detail/journal_1000039550307710_b5da.html
    [28]
    FROST A R.Rotary atomization in the ligament formation mode[J].Journal of Agricultural Engineering Research, 1981, 26(1):63-78. doi: 10.1016/0021-8634(81)90127-X
    [29]
    HINZE J O, MILBORN H.Atomization of liquids by means of a rotating cup[J].Journal of Applied Mechanics-Transactions of the ASME, 1950, 17(2):145-153.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(654) PDF downloads(311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return