Citation: | DING Tao, YAN Guangrong, LEI Yi, et al. A method of multi-level manufacturing service modeling and combinatorial optimal-selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1398-1405. doi: 10.13700/j.bh.1001-5965.2018.0630(in Chinese) |
In order to improve the accuracy of service modeling and combinatorial optimal-selection in cloud manufacturing, a multi-level modeling methodology is proposed to describe manufacturing services, which subdivided the service into three fine-grained levels:resource service, function service and process service. From the perspective of QoS indexes, the relationship among execution, time service cost and user evaluation for different service levels are analyzed and elaborated, and the corresponding evaluation objective functions of services composition are established. A niching behavior based gravitational search algorithm (NGSA) is designed to address manufacturing services composition problem, in which the niche crowding factor and fitness sharing technology are applied to gravitational search algorithm (GSA) to improve its convergence speed and accuracy. Finally, the simulation research results demonstrate that the NGSA algorithm can search better solution with less time-consumption than the traditional algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) algorithm.
[1] |
李伯虎, 张霖, 王时龙, 等.云制造-面向服务的网络化制造新模式[J].计算机集成制造系统, 2010, 16(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201001001t
LI B H, ZHANG L, WANG S L, et al.Cloud manufacturing:A new service-oriented networked manufacturing model[J].Computer Integrated Manufacturing Systems, 2010, 16(1):1-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201001001t
|
[2] |
张霖, 罗永亮, 范文慧, 等.云制造及相关先进制造模式分析[J].计算机集成制造系统, 2011, 17(3):458-468. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201103002
ZHANG L, LUO Y L, FAN W H, et al.Analysis of cloud manufacturing and related advanced manufacturing models[J].Computer Integrated Manufacturing Systems, 2011, 17(3):458-468(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201103002
|
[3] |
陶飞, 张霖, 郭华, 等.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统.2011, 17(3):477-485. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201103004
TAO F, ZHANG L, GUO H, et al.Typical characteristics of cloud manufacturing and several key issues of cloud service composition[J].Computer Integrated Manufacturing Systems, 2011, 17(3):477-485(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201103004
|
[4] |
李伯虎, 张霖, 任磊, 等.云制造典型特征、关键技术与应用[J].计算机集成制造系统, 2012, 18(7):1345-1355. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201207002t
LI B H, ZHANG L, REN L, et al.Typical characteristics, technologies and applications of cloud manufacturing[J].Computer Integrated Manufacturing Systems, 2012, 18(7):1345-1355(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201207002t
|
[5] |
LIANG G, JING X Q.Optimization technology in cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):1181-1193. doi: 10.1007/s00170-018-1991-0
|
[6] |
XU W J, YU J J, ZHOU Z D, et al.Dynamic modeling of manufacturing equipment capability using condition information in cloud manufacturing[J].Journal of Manufacturing Science and Engineering, 2015, 137(4):040907. doi: 10.1115/1.4030079
|
[7] |
HUANG B Q, CHENG H L, TAO F.A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system[J].Enterprise Information Systems, 2014, 8(4):445-463. doi: 10.1080/17517575.2013.792396
|
[8] |
LIU N, LI X P.A resource virtualization mechanism for cloud manufacturing systems[C]//4th International Working Conference on Enterprise Interoperability.Berlin: Springer, 2012, 122(2): 46-59.
|
[9] |
WANG L, GUO S S, LI X X, et al.Distributed manufacturing resource selection strategy in cloud manufacturing[J].International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):3375-3388. doi: 10.1007/s00170-016-9866-8
|
[10] |
王尔申, 庞涛, 曲萍萍, 等.基于混沌的改进粒子群优化粒子滤波算法[J].北京航空航天大学学报, 2016, 42(5):885-890. https://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml
WANG E S, PANG T, QU P P, et al.Improved particle filter algorithm based on chaos particle swarm optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):885-890(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml
|
[11] |
QI J, XU B, XUE Y, et al.Knowledge based differential evolution for cloud computing service composition[J].Journal of Ambient Intelligent and Humanized Computing, 2017, 9(3):565-574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a47831c71b6247b5a3abed47bee149d9
|
[12] |
LI C Y, GUAN J H, LIU T T, et al.An autonomy-oritented method for service composition and optimal selection in cloud manufacturing[J] International Journal of Advanced Manufacturing Technology, 2018, 96(5):2583-2604.
|
[13] |
YAN X, LAU R Y, SONG D, et al.Toward a semantic granularity model for domain-specific information retrieval[J].ACM Transactions on Information Systems, 2011, 29(3):15.
|
[14] |
RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S.GSA:A gravitational search algorithm[J].Information Sciences, 2009, 179(13):2232-2248. doi: 10.1016/j.ins.2009.03.004
|
[15] |
胡洁.智能优化算法理论及应用[M].2版.广州:世界图书出版公司, 2015:95-97.
HU J.Theory and application of intelligent optimization algorithms[M].2nd ed.Guangzhou:World Publishing Corporation, 2015:95-97(in Chinese).
|
[16] |
HORN J, GOLDBERG D E.A timing analysis of convergence to fitness sharing equilibrium[C]//5th International Conference on Parallel Problem Solving from Nature.Berlin: Springer, 1998, 1498: 23-33.
|