Ma Wenzhen, Zheng Jianhua, Gao Changshenget al. Trajectories to the far side of the sun via gravity assists[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(08): 917-921. (in Chinese)
Citation: DING Tao, YAN Guangrong, LEI Yi, et al. A method of multi-level manufacturing service modeling and combinatorial optimal-selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1398-1405. doi: 10.13700/j.bh.1001-5965.2018.0630(in Chinese)

A method of multi-level manufacturing service modeling and combinatorial optimal-selection

doi: 10.13700/j.bh.1001-5965.2018.0630
Funds:

National Science and Technology Major Project 2018ZX04001006

More Information
  • Corresponding author: YAN Guangrong, E-mail: yangr@buaa.edu.cn
  • Received Date: 05 Nov 2018
  • Accepted Date: 22 Feb 2019
  • Publish Date: 20 Jul 2019
  • In order to improve the accuracy of service modeling and combinatorial optimal-selection in cloud manufacturing, a multi-level modeling methodology is proposed to describe manufacturing services, which subdivided the service into three fine-grained levels:resource service, function service and process service. From the perspective of QoS indexes, the relationship among execution, time service cost and user evaluation for different service levels are analyzed and elaborated, and the corresponding evaluation objective functions of services composition are established. A niching behavior based gravitational search algorithm (NGSA) is designed to address manufacturing services composition problem, in which the niche crowding factor and fitness sharing technology are applied to gravitational search algorithm (GSA) to improve its convergence speed and accuracy. Finally, the simulation research results demonstrate that the NGSA algorithm can search better solution with less time-consumption than the traditional algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) algorithm.

     

  • [1]
    李伯虎, 张霖, 王时龙, 等.云制造-面向服务的网络化制造新模式[J].计算机集成制造系统, 2010, 16(1):1-7.

    LI B H, ZHANG L, WANG S L, et al.Cloud manufacturing:A new service-oriented networked manufacturing model[J].Computer Integrated Manufacturing Systems, 2010, 16(1):1-7(in Chinese).
    [2]
    张霖, 罗永亮, 范文慧, 等.云制造及相关先进制造模式分析[J].计算机集成制造系统, 2011, 17(3):458-468.

    ZHANG L, LUO Y L, FAN W H, et al.Analysis of cloud manufacturing and related advanced manufacturing models[J].Computer Integrated Manufacturing Systems, 2011, 17(3):458-468(in Chinese).
    [3]
    陶飞, 张霖, 郭华, 等.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统.2011, 17(3):477-485.

    TAO F, ZHANG L, GUO H, et al.Typical characteristics of cloud manufacturing and several key issues of cloud service composition[J].Computer Integrated Manufacturing Systems, 2011, 17(3):477-485(in Chinese).
    [4]
    李伯虎, 张霖, 任磊, 等.云制造典型特征、关键技术与应用[J].计算机集成制造系统, 2012, 18(7):1345-1355.

    LI B H, ZHANG L, REN L, et al.Typical characteristics, technologies and applications of cloud manufacturing[J].Computer Integrated Manufacturing Systems, 2012, 18(7):1345-1355(in Chinese).
    [5]
    LIANG G, JING X Q.Optimization technology in cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):1181-1193. doi: 10.1007/s00170-018-1991-0
    [6]
    XU W J, YU J J, ZHOU Z D, et al.Dynamic modeling of manufacturing equipment capability using condition information in cloud manufacturing[J].Journal of Manufacturing Science and Engineering, 2015, 137(4):040907. doi: 10.1115/1.4030079
    [7]
    HUANG B Q, CHENG H L, TAO F.A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system[J].Enterprise Information Systems, 2014, 8(4):445-463. doi: 10.1080/17517575.2013.792396
    [8]
    LIU N, LI X P.A resource virtualization mechanism for cloud manufacturing systems[C]//4th International Working Conference on Enterprise Interoperability.Berlin: Springer, 2012, 122(2): 46-59.
    [9]
    WANG L, GUO S S, LI X X, et al.Distributed manufacturing resource selection strategy in cloud manufacturing[J].International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):3375-3388. doi: 10.1007/s00170-016-9866-8
    [10]
    王尔申, 庞涛, 曲萍萍, 等.基于混沌的改进粒子群优化粒子滤波算法[J].北京航空航天大学学报, 2016, 42(5):885-890. https://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml

    WANG E S, PANG T, QU P P, et al.Improved particle filter algorithm based on chaos particle swarm optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):885-890(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml
    [11]
    QI J, XU B, XUE Y, et al.Knowledge based differential evolution for cloud computing service composition[J].Journal of Ambient Intelligent and Humanized Computing, 2017, 9(3):565-574.
    [12]
    LI C Y, GUAN J H, LIU T T, et al.An autonomy-oritented method for service composition and optimal selection in cloud manufacturing[J] International Journal of Advanced Manufacturing Technology, 2018, 96(5):2583-2604.
    [13]
    YAN X, LAU R Y, SONG D, et al.Toward a semantic granularity model for domain-specific information retrieval[J].ACM Transactions on Information Systems, 2011, 29(3):15.
    [14]
    RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S.GSA:A gravitational search algorithm[J].Information Sciences, 2009, 179(13):2232-2248. doi: 10.1016/j.ins.2009.03.004
    [15]
    胡洁.智能优化算法理论及应用[M].2版.广州:世界图书出版公司, 2015:95-97.

    HU J.Theory and application of intelligent optimization algorithms[M].2nd ed.Guangzhou:World Publishing Corporation, 2015:95-97(in Chinese).
    [16]
    HORN J, GOLDBERG D E.A timing analysis of convergence to fitness sharing equilibrium[C]//5th International Conference on Parallel Problem Solving from Nature.Berlin: Springer, 1998, 1498: 23-33.
  • Relative Articles

    [1]LI S C,LI M Z,SUN J A,et al. A micro expression recognition method integrating LBP and parallel attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1404-1414 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0215.
    [2]ZHANG K,LIU Y,HU K. RAW image reconstruction based on multi-scale attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):257-264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0959.
    [3]YANG Yong, LIU Jiaxiang, HUANG Shuying, WANG Xiaozheng, XIA Yukun. Multistage fuzzy discrimination and adaptive parameter fusion strategy for infrared and visible light image fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0383
    [4]ZHANG Luxiao, XIU Chundi, LI Jinkun. A dynamic target filtering algorithm based on point cloud intensity and volume[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0708
    [5]Xu Zhonghui, Rao Zhenyuan, Ma Yanli, Tang Zejing, Huang Xiaodong. An Ocean Predator Algorithm Incorporating Hybrid Search Operators and Competitive Learning and Applications[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0243
    [6]YANG J,ZHANG C. Semantic segmentation of point clouds by fusing dual attention mechanism and dynamic graph convolution[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2984-2994 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0775.
    [7]LIANG Chengwu, JIANG Songqi, LIU Yalong, TIE Yun, LIU Haichang, GAO Lei, FAN Xiaowei. DPV fault detection with multi-modal UAV video and cloud platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0468
    [8]LIN Jiazhe, HE Lei, CHENG Ming, ZHOU Ling, YANG Chunming. Rapid prediction of surface pressure distribution of tactical missile based on point cloud segmentation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0172
    [9]MA A H,PAN S. Edge cloud service migration algorithm based on Markov decision process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1931-1939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0499.
    [10]ZHOU N,ZHANG S L,ZHANG C. Discrete sparrow search algorithm incorporating rough data-deduction for solving hybrid flow-shop scheduling problems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):398-408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0424.
    [11]YAN S Q,LIU W D,YANG P,et al. Multi group sparrow search algorithm based on K-means clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):508-518 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0328.
    [12]WANG Z K,HUANG X Y,ZHU D L,et al. Learning sparrow search algorithm of hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):286-298 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0195.
    [13]WANG Xiang-zhang, YU Li-li. Variable Fuzzy Comprehensive Evaluation for Intelligent Manufacturing Digital Twin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0711
    [14]WANG E S,WANG H,LEI H,et al. ARAIM-related fault subset optimization algorithm based on sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2066-2073 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0596.
    [15]ZHANG Yang, QIU Dong-yuan, ZHANG Bo, CHEN Yan-feng. Comprehensive Evaluation of DC-DC Converters Based on Analytic Hierarchy Process and Entropy Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0291
    [16]TANG Y Q,LI C H,SONG Y F,et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):681-692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0282.
    [17]YAN J T,LIU S G. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3500-3510 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0072.
    [18]LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0680.
    [19]HAO Dong, LIU Jian-xia, SU Jie, HE Yuan-yuan. Optimization of multilayer thermal insulation structure for high-speed aircraft considering material optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0261
    [20]PAN J X,JING B,JIAO X X,et al. Degradation modeling of oxygen concentrator in multiple stress coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):472-481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0260.
  • Cited by

    Periodical cited type(10)

    1. 彭定洪,李旭锋,李杰. 面向云制造服务优选的全排列EDAS模型. 系统科学与数学. 2024(07): 1995-2012 .
    2. 尹超,石志立. 基于NSGA-Ⅲ的众包设计服务资源优选方法研究. 制造业自动化. 2023(01): 95-100 .
    3. 闫媛媛,张玉强,杜朝阳. 基于云原生技术的专用车制造云平台的研究与应用. 重型汽车. 2023(02): 8-9 .
    4. 梁烨,孙瑞娟. 基于云服务优选的高铁乘务人员调度系统设计. 自动化技术与应用. 2023(08): 111-114+122 .
    5. 王平,肖涵,潘燕华. 基于双层规划的云制造资源服务组合. 计算机集成制造系统. 2022(01): 51-58 .
    6. 张飒,朱雪峰. 基于层次状态机的服务组合. 计算机工程与设计. 2022(10): 2777-2782 .
    7. 赵秋云,魏乐,舒红平. 面向制造任务的云制造虚拟车间构造方法. 计算机应用. 2021(07): 2003-2011 .
    8. 刘海亮,贾翠玲,王东辉. 数控加工工艺参数的多目标优化与决策算法研究. 制造技术与机床. 2021(09): 138-142 .
    9. 方舟,郝昕,李锐,马超. 基于微服务架构的云制造执行系统. 科学技术创新. 2020(08): 69-70 .
    10. 黄贻望,何克清,彭长根. 一种面向领域知识的大数据价值服务建模方法. 武汉大学学报(理学版). 2020(05): 462-472 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 74.6 %META: 74.6 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.0 %其他: 6.0 %Seattle: 0.5 %Seattle: 0.5 %北京: 3.7 %北京: 3.7 %南京: 0.2 %南京: 0.2 %厦门: 0.2 %厦门: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 1.5 %呼和浩特: 1.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %天津: 0.2 %天津: 0.2 %宣城: 1.0 %宣城: 1.0 %巴中: 0.2 %巴中: 0.2 %张家口: 1.7 %张家口: 1.7 %扬州: 0.5 %扬州: 0.5 %杭州: 0.2 %杭州: 0.2 %江门: 0.5 %江门: 0.5 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.2 %济南: 0.2 %深圳: 12.4 %深圳: 12.4 %漯河: 0.7 %漯河: 0.7 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 0.2 %芝加哥: 0.2 %西宁: 52.5 %西宁: 52.5 %郑州: 2.2 %郑州: 2.2 %其他Seattle北京南京厦门合肥呼和浩特哈尔滨天津宣城巴中张家口扬州杭州江门沈阳济南深圳漯河石家庄芒廷维尤芝加哥西宁郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(664) PDF downloads(412) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return