Han Yinghong, Chen Wanchun. New method for rapid transfer alignment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (2): 149-152. (in Chinese)
Citation: LI Bowen, YU Baoguo, ZHANG Bo, et al. Simulation of GNSS CV signal based on channel multiplexing method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1406-1414. doi: 10.13700/j.bh.1001-5965.2018.0631(in Chinese)

Simulation of GNSS CV signal based on channel multiplexing method

doi: 10.13700/j.bh.1001-5965.2018.0631
Funds:

University Cooperative Project on New Technology Research KX162600040

More Information
  • Corresponding author: ZHANG Bo, E-mail: bozhang@buaa.edu.cn
  • Received Date: 05 Nov 2018
  • Accepted Date: 21 Dec 2018
  • Publish Date: 20 Jul 2019
  • In the application of global navigation satellite system (GNSS) common view (CV) technology, the simulation of the GNSS CV signal is needed to reduce the cost of testing the CV receiver and the CV algorithm. For this reason, a channel multiplexing method of signal simulation of GNSS CV signal is proposed. First, the principle of GNSS CV technology is analyzed. The GNSS CV signal simulation method based on GNSS direct signal simulator was designed, and the possible errors in the process of CV signal transmission were analyzed. Finally, the CV signal of the simulation under zero base line, short base line and long base line, as well as the experimental data collected by an experiment were verified and analyzed. The result of verification shows that the simulated GNSS CV signal is located accurately and the positioning accuracy is in meter level. The result of CV comparison shows that the accuracy of root mean square (RMS) is better than 12 ns. The time transfer of CV method can be carried out, which proves that the proposed CV signal simulation method can be effectively used to generate GNSS CV signal. It has certain theoretical reference significance and practical application value for the development of GNSS CV signal simulator and CV receiver and for the study of CV algorithm.

     

  • [1]
    ALLAN D, WEISS M.Accurate time and frequency transfer during common-view of a GPS satellite[C]//34th Annual Symposium on Frequency Control.Piscataway, NJ: IEEE Press, 1980: 334-346.
    [2]
    王彦辉, 秘金钟, 谷守周.不同基线长度的GPS共视授时算法[J].导航定位学报, 2017, 5(4):41-45.

    WANG Y H, MI J Z, GU S Z.Algorithm of GPS common-view timing on different baseline lengths[J].Journal of Navigation Positioning, 2017, 5(4):41-45(in Chinese).
    [3]
    DACH R, BEUTLER G, HUGENTOBLER U, et al.Time transfer using GPS carrier phase:Error propagation and results[J].Journal of Geodesy, 2003, 77(1-2):1-14. doi: 10.1007/s00190-002-0296-z
    [4]
    杨旭海.GPS共视时间频率传递应用研究[D].西安: 中国科学院研究生院, 2003: 37-57.

    YANG X H.Study on the application of time and frequency transfer with GPS common-view[D].Xi'an: Graduate School of Chinese Academy of Sciences, 2003: 37-57(in Chinese).
    [5]
    许国宏, 韦金辰, 陈国宇.双星系统高精度共视授时技术[J].应用科学, 2007, 34(2):41-44.

    XU G H, WEI J C, CHEN G Y.Research on high precision common-view time service of double star systen[J].Applied Science and Technology, 2007, 34(2):41-44(in Chinese).
    [6]
    高小珣, 高源, 张越, 等.GPS共视法远距离时间频率传递技术研究[J].计量科学, 2008, 29(1):80-83.

    GAO X X, GAO Y, ZHANG Y, et al.GPS common view method for remote time and frequency transfer[J].Acta Metrologica Sinica, 2008, 29(1):80-83(in Chinese).
    [7]
    温会锋, 张增强.基于3σ法的卫星共视时间传递算法设计[J].航空计算技术, 2016, 46(3):98-100. doi: 10.3969/j.issn.1671-654X.2016.03.024

    WEN H F, ZHANG Z Q.Satellite common-view time transfer algorithm based on 3σ method[J].Aeronautical Computing Technique, 2016, 46(3):98-100(in Chinese). doi: 10.3969/j.issn.1671-654X.2016.03.024
    [8]
    许龙霞.基于共视原理的卫星授时方法[D].西安: 中国科学院大学, 2012: 7-25.

    XU L X.A new common-view based timing method[D].Xi'an: University of Chinsee Academy of Sciences, 2012: 7-25(in Chinese).
    [9]
    王天.北斗卫星导航系统授时性能评估研究[D].西安: 长安大学, 2014: 15-20.

    WANG T.Study on the timing performance evaluation of Bei Dou satellite navigation system[D].Xi'an: Chang'an University, 2014: 15-20(in Chinese).
    [10]
    钦伟瑾, 葛玉龙, 韦沛.基于共视模式的GEO载波相位时间传递精度评估[C]//第九届中国卫星导航学术年会, 2018: 73-77.

    QIN W J, GE Y L, WEI P.Evaluation on precision of GEO time transfer of CV-based[C]//The 9th China Satellite Navigation Conference, 2018: 73-77(in Chinese).
    [11]
    杨东凯, 张其善.GNSS反射信号处理基础与实践[M].北京:电子工业出版社, 2012.

    YANG D K, ZHANG Q S.GNSS reflected signal processing:Fundamentals and applications[M].Beijing:Publishing House of Electronics Industry, 2012(in Chinese).
    [12]
    ARINC Research Coporation.Navstar GPS spacesegment/navigation user interfaces(Public release version C): ICD-GPS-200[R].Segundo: ARINC Research Coporation, 1993.
    [13]
    赵军祥.高动态智能GPS卫星信号模拟器软件数学模型研究[D].北京: 北京航空航天大学, 2003.

    ZHAO J X.The study on mathematical model of high dynamic and intelligent GPS Satellite signal simulator's software[D].Beijing: Beihang University, 2003(in Chinese).
    [14]
    KLOBUCHAR J A.Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users[C]//PLAN'S 86-Position Location & Navigation Symposium.Piscataway, NJ: IEEE Press, 1986: 280-286.
    [15]
    HOPFIELD H S. Tropospheric effect on electromagnetically measured range:Prediction from surface weather data[J].Radio Science, 2016, 6(3):357-367.
    [16]
    PÍRIZ R, PEIRÓ B, MERINO M.The Galileo constellation design: A systematic approach[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation.Manassas: ION, 2005, 1296: 1306.
    [17]
    ROULSTON A, TALBOT N, ZHANG K.An evaluation of various GPS satellite ephemerides[C]//Proceedings of International Technical Meeting of the Institute of Navigation, 2000.
  • Relative Articles

    [1]GONG F X,DIWU Y G. Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):380-388 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0027.
    [2]QIN H L,ZHANG Y,SHI G T,et al. Doppler positioning technology based on Globalstar opportunity signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):360-367 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0013.
    [3]WANG Weijie, GUO Dinghun, LI Xiangyu, GENG Yixuan, QUAN Long. Typical Fault Mechanism Modeling and Simulation of Insulin Pump Sets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0394
    [4]WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0522.
    [5]CHEN Xi, XIE Shuguo, WEI Mengyuan, LI Yuanyuan. Simulation modeling methodology for broadband conducted immunity quantization of analog and analog-digital hybrid chips[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0193
    [6]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [7]WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529.
    [8]ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530.
    [9]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [10]GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243.
    [11]RUAN H L,HONG X B,WANG Y N,et al. Power measurement deviations of direct and reflected signals from BDS GEO satellites in ground-based GNSS-R applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):825-831 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0080.
    [12]ZHEN Jia-huan, ZHU Yun-long, YANG Dong-kai, ZHANG Guo-dong, WANG Feng. Detection of typhoons and estimation of eye position using satellite-based GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0395
    [13]WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0310.
    [14]DAI Ye-ying, SUN Rui, DENG Si-yu, JI Li, WANG Yuan-yuan, HUANG Xue-dong. Grid error modeling aided GNSS/IMU integrated navigation comprehensive quality control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0495
    [15]JI Li, SUN Rui, WANG Yuan-yuan, DAI Ye-ying. Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0440
    [16]WEI S H,ZHANG J Q,LI F,et al. Lie mechanism based on phase transfer entropy of EEG signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):23-30 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0187.
    [17]ZHANG C,ZHUANG K,YU P,et al. Process control net modelling and analyzing for satellite test and evaluation in launch site[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1948-1955 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0628.
    [18]DU Wenbo, SHI Wanjun, LIAO Shengshi, ZHU Xi. Passenger flow forecasting of airport express based on time and feature cooperative attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1605-1612. doi: 10.13700/j.bh.1001-5965.2022.0321
    [19]LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
    [20]YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141
  • Cited by

    Periodical cited type(1)

    1. 蒋志颀,范雷. 基于机器学习的无线通信网络安全漏洞智能监测系统. 电子设计工程. 2021(15): 115-119 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(862) PDF downloads(586) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return