Citation: | HUANG Xingrong, LIU Jiuzhou, LI Linet al. Dynamic characteristics analysis method of complex systems based on nonlinear mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1337-1348. doi: 10.13700/j.bh.1001-5965.2018.0643(in Chinese) |
Nonlinear problem has always been an obstacle in dynamic analysis domain due to its complexity and high computational cost. This paper aims to present a simple, accurate and efficient nonlinear modal analysis method which can be applied to some common nonlinear systems, including Duffing system, dry friction, nonlinear material and so on. The kernel technique of this numerical method lies in establishing the variation law of the nonlinear modal parameters in function of modal amplitude:on the one hand, the steady-state problem is simplified into one-dimensional algebraic nonlinear problem, resulting in a significant simplification in numerical computation; on the other hand, the analysis of nonlinear modal parameters in function of modal amplitude provides a modal overview for the comprehension of system's nonlinear dynamic behavior. Following a description of the theoretical aspects and numerical simulation process of this method, it has been proven to be efficient in analyzing a Duffing system with real nonlinear mode, a dry friction system with complex nonlinear mode and a multi-physics system integrating piezoelectric material. A reduction method based on the proposed strategy is then presented, which is simple in mathematical form and efficient in numerical computations for analyzing large complex nonlinear systems. It has significant advantages in computational efficiency when combined with the mode synthesis method to solve the dynamic behavior of large complex nonlinear systems.
[1] |
JIANG D, PIERRE C, SHAW S W.Nonlinear normal modes for vibratory systems under harmonic excitation[J].Journal of Sound and Vibration, 2005, 288(4-5):791-812. doi: 10.1016/j.jsv.2005.01.009
|
[2] |
TOUZÉ C, AMABILI M.Nonlinear normal modes for damped geometrically nonlinear systems:Application to reduced-order modelling of harmonically forced structures[J].Journal of Sound and Vibration, 2006, 298(4-5):958-981. doi: 10.1016/j.jsv.2006.06.032
|
[3] |
RENSON L, KERSCHEN G, COCHELIN B.Numerical computation of nonlinear normal modes in mechanical engineering[J].Journal of Sound and Vibration, 2016, 364:177-206. doi: 10.1016/j.jsv.2015.09.033
|
[4] |
HUANG X R, JÉZÉQUEL L, BESSET S, et al.Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure[J].Mechanical Systems and Signal Processing, 2018, 99:624-646. doi: 10.1016/j.ymssp.2017.07.002
|
[5] |
LIU J Z, LI L, HUANG X R, et al.Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor[J].Mechanical Systems and Signal Processing, 2017, 95:425-445. doi: 10.1016/j.ymssp.2017.03.049
|
[6] |
ROSENBERG R M.The normal modes of nonlinear n-degrees-of-freedom systems[J].Journal of Applied Mechanics, 1962, 29(1):595-611.
|
[7] |
SZEMPLINSKA-STUPNICKA W. The resonant vibration of homogeneous non-linear systems[J].International Journal of Non-Linear Mechanics, 1980, 15(4-5):407-415. doi: 10.1016/0020-7462(80)90026-8
|
[8] |
JÉZÉQUEL L, LAMARQUE C.Analysis of non-linear dynamical systems by the normal form theory[J].Journal of Sound and Vibration, 1991, 149(3):429-459. doi: 10.1016/0022-460X(91)90446-Q
|
[9] |
SETIO H D, SETIO S, JÉZÉQUEL L.A method of non-linear modal identification from frequency response tests[J].Journal of Sound and Vibration, 1992, 158(3):497-515. doi: 10.1016/0022-460X(92)90421-S
|
[10] |
CHONG Y H, IMREGUN M.Development and application of a nonlinear modal analysis technique for mdof systems[J].Journal of Vibration and Control, 2001, 7(2):167-179. doi: 10.1177/107754630100700202
|
[11] |
GIBERT C.Fitting measured frequency response using non-linear modes[J].Mechanical Systems and Signal Processing, 2003, 17(1):211-218.
|
[12] |
郑兆昌.关于线性和非线性系统内在的本质联系——多自由度非线性系统的定量和定性分析[J].振动与冲击, 2008, 27(1):4-8. doi: 10.3969/j.issn.1000-3835.2008.01.001
ZHENG Z C.Intrinsic and simple connection of linear systems with non-linear ones:Quantitative and qualitative analysis of large scale multiple DOF nonlinear systems[J].Journal of Vibration and Shock, 2008, 27(1):4-8(in Chinese). doi: 10.3969/j.issn.1000-3835.2008.01.001
|
[13] |
HUANG X R, JÉZÉQUEL L, BESSET S, et al.Nonlinear modal synthesis for analyzing structures with a frictional interface using a generalized Masing model[J].Journal of Sound and Vibration, 2018, 434:166-191. doi: 10.1016/j.jsv.2018.07.027
|
[14] |
LIU J Z, LI L, FAN Y, et al.A modified nonlinear modal synthesis scheme for mistuned blisks with synchronized switch damping[J].International Journal of Aerospace Engineering, 2018, 2018:8517890.
|
[15] |
DUFFING G.Elastizität und Reibung beim Riementrieb[J].Forschung Auf Dem Gebiet Des Ingenieurwesens A, 1931, 2(3):99-104.
|
[16] |
李琳, 刘久周, 李超.航空发动机中的干摩擦阻尼器及其设计技术研究进展[J].航空动力学报, 2016, 31(10):2305-2317.
LI L, LIU J Z, LI C.Review of the dry friction dampers in aero-engine and their design technologies[J].Journal of Aerospace Power, 2016, 31(10):2305-2317(in Chinese).
|
[17] |
CHIANG D Y.The generalized Masing models for deteriorating hysteresis and cyclic plasticity[J].Applied Mathematical Modelling, 1999, 23(11):847-863. doi: 10.1016/S0307-904X(99)00015-3
|
[18] |
BAMPTON M C C, CRAIG R R.Coupling of substructures for dynamic analyses[J].AIAA Journal, 1968, 6(7):1313-1319. doi: 10.2514/3.4741
|
[19] |
KRYLOV N M, BOGOLYUBOV N N.Introduction to non-linear mechanics[M].Princeton:Princeton University Press, 1947.
|
[1] | YAN P,LI Q,HUANG X,et al. Friction and heat flux prediction of lift body under different gas models and slip boundary models[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1277-1291 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0209. |
[2] | WANG Boqiao, ZHANG Xianghua, CHEN Zheng, ZHANG Ze. Modelling Method for Non-Singular Dynamics of Air-To-Air Missiles and Trajectory Optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0760 |
[3] | LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238. |
[4] | LI Yajie, LI Gang, LI Wei, LU Chenjing. ICPS multi-modal integrated security control based on data-model linkage under dual-end asynchronous DoS attacks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0818 |
[5] | WANG Xiang-zhang, YU Li-li. Variable Fuzzy Comprehensive Evaluation for Intelligent Manufacturing Digital Twin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0711 |
[6] | XIAO Yao, CHEN Dengkai, ZHOU Yao, XIAO Jianghao, HOU Yuhong. BN-based comprehensive evaluation model for display interface usability in civil aircraft cockpit[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0627 |
[7] | LI Shanmei, SONG Sini, WANG Hongyong, WANG Duanyang, ZHAO Mo. Refined prediction of terminal area traffic congestion based on multimodal spatio-temporal feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0557 |
[8] | WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370 |
[9] | XIAO Bo, GUO Fang, WANG Rong, ZENG Zhaolong. Abnormal Behavior Detection Method Based on Multi-modal Feature Fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0455 |
[10] | ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma∞、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758 |
[11] | LIN Yishan, ZUO Jing, LU Shuhua. A multimodal sentiment analysis model based on audio and video features optimization and cross-modal Transformer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0247 |
[12] | LI M M,LYU X D,WANG N,et al. Blind source extraction of complex non-Gaussian signals based on convolution linear mixture model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):212-219 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0197. |
[13] | CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541. |
[14] | LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0680. |
[15] | ZHAO M,LU H,WANG S Q,et al. A multimodal multi-objective path planning algorithm based on multi-swarm cooperative learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):606-616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0274. |
[16] | WANG W Z,KONG W X,YAN H,et al. Acoustic metasurfaces for stabilization of broadband unstable modes in high speed boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):388-396 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0235. |
[17] | XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0085. |
[18] | ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154 |
[19] | YANG Zhan-gang, KE Zhong-shu, YANG Xu-wei, BAO Xing-wang. Analysis of the influence of finishing process on the electrical properties of composite skin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0763 |
[20] | MA Runmei, ZHAO Xiang, CHEN Xiaozhu, LI Shuangxi, YANG Haichao. End face deformation and friction and wear of high-speed dry friction mechanical seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1174-1182. doi: 10.13700/j.bh.1001-5965.2021.0005 |
1. | 陈乔,安朝,谢长川,杨超. 基于学习算法的结构大变形预测及气动弹性分析. 北京航空航天大学学报. 2025(03): 943-952 . ![]() | |
2. | 姚毅,黄行蓉,管晓乐,徐迅,张大义. 多级多重模态减缩策略及其在转子系统动力学特性分析上的应用. 振动工程学报. 2024(05): 737-746 . ![]() | |
3. | 梁艺芳,孟建军,孟高阳. 轨道螺栓扳手CAD/CAE一体化设计. 机电工程技术. 2024(08): 47-51 . ![]() | |
4. | 任翠萍,张俊丽,董银丽. 基于分数阶微分方程的复合材料粘弹性系统的非线性系统动力学研究. 自动化与仪器仪表. 2023(12): 33-37 . ![]() | |
5. | 黄行蓉,孙赫,吴坚,范兴超,沈庆阳,张大义. 某涡扇发动机涡轮叶片动测应变模态频移现象分析. 航空动力学报. 2022(11): 2388-2397 . ![]() | |
6. | 张鹏,罗杨,杨通达,于菲,刘卫胜. 设计过程复杂性视角下复杂系统研究综述. 机械设计. 2020(08): 1-10 . ![]() |