HUANG Xingrong, LIU Jiuzhou, LI Linet al. Dynamic characteristics analysis method of complex systems based on nonlinear mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1337-1348. doi: 10.13700/j.bh.1001-5965.2018.0643(in Chinese)
Citation: HUANG Xingrong, LIU Jiuzhou, LI Linet al. Dynamic characteristics analysis method of complex systems based on nonlinear mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1337-1348. doi: 10.13700/j.bh.1001-5965.2018.0643(in Chinese)

Dynamic characteristics analysis method of complex systems based on nonlinear mode

doi: 10.13700/j.bh.1001-5965.2018.0643
More Information
  • Corresponding author: LI Lin, E-mail: feililin@buaa.edu.cn
  • Received Date: 07 Nov 2018
  • Accepted Date: 02 Feb 2019
  • Publish Date: 20 Jul 2019
  • Nonlinear problem has always been an obstacle in dynamic analysis domain due to its complexity and high computational cost. This paper aims to present a simple, accurate and efficient nonlinear modal analysis method which can be applied to some common nonlinear systems, including Duffing system, dry friction, nonlinear material and so on. The kernel technique of this numerical method lies in establishing the variation law of the nonlinear modal parameters in function of modal amplitude:on the one hand, the steady-state problem is simplified into one-dimensional algebraic nonlinear problem, resulting in a significant simplification in numerical computation; on the other hand, the analysis of nonlinear modal parameters in function of modal amplitude provides a modal overview for the comprehension of system's nonlinear dynamic behavior. Following a description of the theoretical aspects and numerical simulation process of this method, it has been proven to be efficient in analyzing a Duffing system with real nonlinear mode, a dry friction system with complex nonlinear mode and a multi-physics system integrating piezoelectric material. A reduction method based on the proposed strategy is then presented, which is simple in mathematical form and efficient in numerical computations for analyzing large complex nonlinear systems. It has significant advantages in computational efficiency when combined with the mode synthesis method to solve the dynamic behavior of large complex nonlinear systems.

     

  • [1]
    JIANG D, PIERRE C, SHAW S W.Nonlinear normal modes for vibratory systems under harmonic excitation[J].Journal of Sound and Vibration, 2005, 288(4-5):791-812. doi: 10.1016/j.jsv.2005.01.009
    [2]
    TOUZÉ C, AMABILI M.Nonlinear normal modes for damped geometrically nonlinear systems:Application to reduced-order modelling of harmonically forced structures[J].Journal of Sound and Vibration, 2006, 298(4-5):958-981. doi: 10.1016/j.jsv.2006.06.032
    [3]
    RENSON L, KERSCHEN G, COCHELIN B.Numerical computation of nonlinear normal modes in mechanical engineering[J].Journal of Sound and Vibration, 2016, 364:177-206. doi: 10.1016/j.jsv.2015.09.033
    [4]
    HUANG X R, JÉZÉQUEL L, BESSET S, et al.Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure[J].Mechanical Systems and Signal Processing, 2018, 99:624-646. doi: 10.1016/j.ymssp.2017.07.002
    [5]
    LIU J Z, LI L, HUANG X R, et al.Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor[J].Mechanical Systems and Signal Processing, 2017, 95:425-445. doi: 10.1016/j.ymssp.2017.03.049
    [6]
    ROSENBERG R M.The normal modes of nonlinear n-degrees-of-freedom systems[J].Journal of Applied Mechanics, 1962, 29(1):595-611.
    [7]
    SZEMPLINSKA-STUPNICKA W. The resonant vibration of homogeneous non-linear systems[J].International Journal of Non-Linear Mechanics, 1980, 15(4-5):407-415. doi: 10.1016/0020-7462(80)90026-8
    [8]
    JÉZÉQUEL L, LAMARQUE C.Analysis of non-linear dynamical systems by the normal form theory[J].Journal of Sound and Vibration, 1991, 149(3):429-459. doi: 10.1016/0022-460X(91)90446-Q
    [9]
    SETIO H D, SETIO S, JÉZÉQUEL L.A method of non-linear modal identification from frequency response tests[J].Journal of Sound and Vibration, 1992, 158(3):497-515. doi: 10.1016/0022-460X(92)90421-S
    [10]
    CHONG Y H, IMREGUN M.Development and application of a nonlinear modal analysis technique for mdof systems[J].Journal of Vibration and Control, 2001, 7(2):167-179. doi: 10.1177/107754630100700202
    [11]
    GIBERT C.Fitting measured frequency response using non-linear modes[J].Mechanical Systems and Signal Processing, 2003, 17(1):211-218.
    [12]
    郑兆昌.关于线性和非线性系统内在的本质联系——多自由度非线性系统的定量和定性分析[J].振动与冲击, 2008, 27(1):4-8. doi: 10.3969/j.issn.1000-3835.2008.01.001

    ZHENG Z C.Intrinsic and simple connection of linear systems with non-linear ones:Quantitative and qualitative analysis of large scale multiple DOF nonlinear systems[J].Journal of Vibration and Shock, 2008, 27(1):4-8(in Chinese). doi: 10.3969/j.issn.1000-3835.2008.01.001
    [13]
    HUANG X R, JÉZÉQUEL L, BESSET S, et al.Nonlinear modal synthesis for analyzing structures with a frictional interface using a generalized Masing model[J].Journal of Sound and Vibration, 2018, 434:166-191. doi: 10.1016/j.jsv.2018.07.027
    [14]
    LIU J Z, LI L, FAN Y, et al.A modified nonlinear modal synthesis scheme for mistuned blisks with synchronized switch damping[J].International Journal of Aerospace Engineering, 2018, 2018:8517890.
    [15]
    DUFFING G.Elastizität und Reibung beim Riementrieb[J].Forschung Auf Dem Gebiet Des Ingenieurwesens A, 1931, 2(3):99-104.
    [16]
    李琳, 刘久周, 李超.航空发动机中的干摩擦阻尼器及其设计技术研究进展[J].航空动力学报, 2016, 31(10):2305-2317.

    LI L, LIU J Z, LI C.Review of the dry friction dampers in aero-engine and their design technologies[J].Journal of Aerospace Power, 2016, 31(10):2305-2317(in Chinese).
    [17]
    CHIANG D Y.The generalized Masing models for deteriorating hysteresis and cyclic plasticity[J].Applied Mathematical Modelling, 1999, 23(11):847-863. doi: 10.1016/S0307-904X(99)00015-3
    [18]
    BAMPTON M C C, CRAIG R R.Coupling of substructures for dynamic analyses[J].AIAA Journal, 1968, 6(7):1313-1319. doi: 10.2514/3.4741
    [19]
    KRYLOV N M, BOGOLYUBOV N N.Introduction to non-linear mechanics[M].Princeton:Princeton University Press, 1947.
  • Relative Articles

    [1]YAO Yougui, LI Shujie, CHEN Zhangyi, XUE Feng. Autism spectrum disorder detection based on multi-modal graph learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0467
    [2]ZHAO W,LIU L,WANG K P,et al. Multimodal bidirectional information enhancement network for RGBT tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):596-605 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0395.
    [3]CHEN H,QIAN S S,LI Z M,et al. Multi-modal mask Transformer network for social event classification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):579-587 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0388.
    [4]LIANG H,WANG H R,WANG D. Cross-modal hashing network based on self-attention similarity transfer[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):615-622 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0402.
    [5]ZHU Guangli, ZHANG Yulei, LIU Jiajia, JIAO Yixuan, LI Ziliang, ZHANG Shunxiang. Local Sparse Attention-based for Multi-modal Sarcasm Detection Model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0544
    [6]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [7]CAO Ziyu, YANG Jianhua. Nonlinear Optimization-based Online Temporal Calibration of Stereo Camera and IMU in Stereo Visual-Inertial Odometry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0374
    [8]WANG Yan, HUANG Binghao. Pose graph optimization algorithm based on nonlinear factor recovery[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0363
    [9]YANG Shi-lin, QIAO Kai-li, WAN Xiao-zhong, DUAN Mian-chao, GUO Ning, XU Chao. Multidisciplinary Coupled Dynamics Modeling of Electro-mechanical actuator Considering Nonlinear Clearances in Multiple Stages[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0136
    [10]ZHOU Wen-tao, CHANG Si-jiang, ZHAN Peng-yao, CUI Hui-zhen. Nonlinear region of attraction of angular motion for a controlled projectile with self-rotating wraparound fins[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0732
    [11]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [12]YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0252.
    [13]WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0681.
    [14]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [15]SU Jinxin, XI Ziyan, DAI Yuting. Nonlinear fluid-structure interaction response analysis of a large flexible wing under strong gusts[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0278
    [16]LI H Y,CHEN J,YU P F,et al. Bimodal text-guided image inpainting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2547-2557 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0720.
    [17]XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0045.
    [18]MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0764.
    [19]XU Q Y,MENG Y,LI S. Strain-based geometrically nonlinear beam modeling and analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2039-2049 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0627.
    [20]MA Runmei, ZHAO Xiang, CHEN Xiaozhu, LI Shuangxi, YANG Haichao. End face deformation and friction and wear of high-speed dry friction mechanical seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1174-1182. doi: 10.13700/j.bh.1001-5965.2021.0005
  • Cited by

    Periodical cited type(5)

    1. 姚毅,黄行蓉,管晓乐,徐迅,张大义. 多级多重模态减缩策略及其在转子系统动力学特性分析上的应用. 振动工程学报. 2024(05): 737-746 .
    2. 梁艺芳,孟建军,孟高阳. 轨道螺栓扳手CAD/CAE一体化设计. 机电工程技术. 2024(08): 47-51 .
    3. 任翠萍,张俊丽,董银丽. 基于分数阶微分方程的复合材料粘弹性系统的非线性系统动力学研究. 自动化与仪器仪表. 2023(12): 33-37 .
    4. 黄行蓉,孙赫,吴坚,范兴超,沈庆阳,张大义. 某涡扇发动机涡轮叶片动测应变模态频移现象分析. 航空动力学报. 2022(11): 2388-2397 .
    5. 张鹏,罗杨,杨通达,于菲,刘卫胜. 设计过程复杂性视角下复杂系统研究综述. 机械设计. 2020(08): 1-10 .

    Other cited types(10)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views(1227) PDF downloads(696) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return