Gao Yuanyang, Qian Yonggang, Wang Wenjieet al. Game behaviors and efficiency analysis under Chinese pricing system of military aviation products[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(05): 536-539. (in Chinese)
Citation: WANG Zekun, WU Minggong, WEN Xiangxi, et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650(in Chinese)

Flight collision resolution and recovery strategy based on velocity obstacle method

doi: 10.13700/j.bh.1001-5965.2018.0650
Funds:

National Natural Science Foundation of China 71801221

Natural Science Basic Research Plan in Shaanxi Province of China 2018JQ7004

More Information
  • Corresponding author: WEN Xiangxi, E-mail: wxxajy@163.com
  • Received Date: 12 Nov 2018
  • Accepted Date: 22 Mar 2019
  • Publish Date: 20 Jul 2019
  • A geometric optimization algorithm is proposed based on velocity obstacle method to solve the problem of flight collision resolution and track recovery. We gave a rigorous mathematical description of the problem. Firstly, according to the relative position and speed relationship between the aircraft, the collision type and whether the conditions of each release strategy are met are determined, and the corresponding resolution strategy is adopted. After the collision was resolved, the plane resumed its flight on the original route. The model can effectively solve flight collision through geometric analysis and theoretical derivation. In addition, the track recovery point and the parameter solving process involved are given in detail. Finally, in the simulation, the algorithm chooses the collision resolution strategy independently according to different scenes. The results show that this method is simple and efficient, and the track recovery redirects the ownership to its original target waypoint without introducing new flight collision.

     

  • [1]
    BILIMORIA K D.A geometric optimization approach to aircraft conflict resolution: AIAA-2000-4265[R].Reston: AIAA, 2000.
    [2]
    BILIMORIA K D, SRIDHAR B, CHATTERJI G B.FACET: Future ATM concepts evaluation tool[C]//3rd USA/Europe Air Traffic Management R&D Seminar, 2000. doi: 10.2514/atcq.9.1.1
    [3]
    HWANG I, KIM J, TOMLIN C.Protocol-based conflict resolution for air traffic control[C]//7th USA/Europe Air Traffic Management R&D Seminar, 2007. doi: 10.2514/atcq.15.1.1
    [4]
    GESER A, MUNOZ C.A geometric approach to strategic conflict detection and resolution[C]//Digital Avionics Systems Conference.Piscataway, NJ: IEEE Press, 2002, 1(6B): 1-11.
    [5]
    ZHANG Y, ZHANG M, YU J.Real-time flight conflict detection and release based on multi-agent system[C]//IOP Conference Series: Earth and Environmental Science.Bristol: IOP Publishing, 2018: 032053.
    [6]
    GOSS J, RAJVANSHI R, SUBBARAO K.Aircraft conflict detection and resolution using mixed geometric and collision cone approaches: AIAA-2004-4879[R].Reston: AIAA, 2004.
    [7]
    MUELLER T, SCHLEICHER D, BILIMORIA K D.Conflict detection and resolution with traffic flow constraints: AIAA-2002-4445[R].Reston: AIAA, 2002.
    [8]
    李雄, 徐肖豪, 朱承元.基于几何算法的空中交通改航路径规划[J].系统工程, 2008, 26(8):37-40. doi: 10.3969/j.issn.1001-4098.2008.08.007

    LI X, XU X H, ZHU C Y.Air traffic reroute planning based on geometry algorithm[J].Systems Engineering, 2008, 26(8):37-40(in Chinese). doi: 10.3969/j.issn.1001-4098.2008.08.007
    [9]
    BERG J V D, LIN M, MANOCHA D.Reciprocal velocity obstacles for real-time multi-agent navigation[C]//2008 IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2008: 1928-1935.
    [10]
    BERG J V D, GUY S, LIN M, et al.Reciprocal n-body collision avoidance[C]//The 14th International Symposium ISRR.Berlin: Springer, 2011: 3-19.
    [11]
    DURAND N, BARNIER N.Does ATM need centralized coordination Autonomous conflict resolution analysis in a constrained speed environment[C]//11th USA/E Air Traffic Management R&D Seminar, 2015. doi: 10.2514/atcq.23.4.325
    [12]
    ALLIGNOL C, BARNIER N, DURAND N, et al.Assessing the robustness of a UAS detect & avoid algorithm[C]//12th USA/Europe Air Traffic Management R&D Seminar, 2017.
    [13]
    杨秀霞, 周硙硙, 张毅.基于速度障碍圆弧法的UAV自主避障规划研究[J].系统工程与电子技术, 2017, 39(11):168-176.

    YANG X X, ZHOU W W, ZHANG Y.Automatic obstacle-avoidance planning for UAV based on velocity obstacle arc method[J].Systems Engineering and Electronics, 2017, 39(11):168-176(in Chinese).
    [14]
    杨秀霞, 张毅, 周硙硙.一种动态不确定环境下UAV自主避障算法[J].系统工程与电子技术, 2017, 39(11):2546-2552. doi: 10.3969/j.issn.1001-506X.2017.11.23

    YANG X X, ZHANG Y, ZHOU W W.Automatic obstacle avoidance algorithm for UAV in dynamic uncertain environment[J].Systems Engineering and Electronics, 2017, 39(11):2546-2552(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.11.23
    [15]
    蒋旭瑞, 吴明功, 温祥西, 等.基于合作博弈的多机飞行冲突解脱策略[J].系统工程与电子技术, 2018, 40(11):2482-2490. doi: 10.3969/j.issn.1001-506X.2018.11.14

    JIANG X R, WU M G, WEN X X, et al.Conflict resolution of multi-aircraft based on the cooperative game[J].Systems Engineering and Electronics, 2018, 40(11):2482-2490(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.11.14
    [16]
    吴明功, 王泽坤, 温祥西, 等.飞行冲突解脱的几何优化模型[J].系统工程与电子技术, 2019, 41(4):863-869.

    WU M G, WANG Z K, WEN X X, et al.Aircraft conflict resolution model based on geometric optimization[J].Systems Engineering and Electronics, 2019, 41(4):863-869(in Chinese).
  • Cited by

    Periodical cited type(15)

    1. 张飞桥,张亦驰,严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测. 科学技术与工程. 2024(05): 2150-2157 .
    2. 吴明功,毕可心,温祥西,孙继昆. 基于飞行冲突网络最优支配集的冲突调配策略. 北京航空航天大学学报. 2023(02): 242-253 . 本站查看
    3. 岳仁田,马赵飞. 基于几何关系的无人机低空飞行冲突探测与解脱策略. 中国安全科学学报. 2023(05): 112-120 .
    4. 郭华,郭小和. 改进速度障碍法的无人机局部路径规划算法. 航空学报. 2023(11): 271-281 .
    5. 杨建航,张福彪,王江. 基于可达集的无人机低空飞行冲突解脱算法. 北京航空航天大学学报. 2023(07): 1813-1827 . 本站查看
    6. 王尔申,宋远上,佟刚,王传云,曲萍萍,徐嵩. 基于SVM的低空飞行冲突探测改进模型. 北京航空航天大学学报. 2022(01): 8-14 . 本站查看
    7. 张宏宏,甘旭升,孙静娟,王宁,陈致远. 针对合作型无人机的最优防相撞策略. 计算机工程与应用. 2022(04): 290-297 .
    8. 高扬,郭钒,陈靖淞,李高磊,王向章. 融合空域无人机与有人机冲突风险预测与解脱. 安全与环境学报. 2022(06): 3288-3294 .
    9. 牛胜华,韩佩. 智能巡查机器人自主避撞系统设计. 电子设计工程. 2021(04): 155-158+163 .
    10. 王红勇,邓涛涛,徐文强. 基于调速的飞行冲突探测与解脱方法. 科学技术与工程. 2021(13): 5584-5591 .
    11. 王新语,夏侯云翔,王耀锐. 基于复杂网络的空中交通流量控制系统设计. 自动化技术与应用. 2021(09): 137-141+151 .
    12. 杨文达,吴明功,温祥西,毕可心,蒋旭瑞. 基于速度障碍法的三维确定型冲突探测模型. 西华大学学报(自然科学版). 2021(06): 1-6 .
    13. 焦卫东,姚军强,王瑞冬. 基于凸包围盒的飞行冲突检测算法. 中国安全科学学报. 2021(12): 32-38 .
    14. 张宏宏,甘旭升,李昂,高志强,徐鑫宇. 基于速度障碍法的无人机避障与航迹恢复策略. 系统工程与电子技术. 2020(08): 1759-1767 .
    15. 徐鹏,康雪晶. 改进互动速度障碍的多机器人协同避障. 自动化与仪表. 2020(09): 35-39 .

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(1857) PDF downloads(455) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return