Volume 45 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
SONG Bo, LI Wei, LIAN Guoxuanet al. EFIT simulation of 2D ultrasonic sound field based on CUDA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675(in Chinese)
Citation: SONG Bo, LI Wei, LIAN Guoxuanet al. EFIT simulation of 2D ultrasonic sound field based on CUDA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675(in Chinese)

EFIT simulation of 2D ultrasonic sound field based on CUDA

doi: 10.13700/j.bh.1001-5965.2018.0675
Funds:

National Natural Science Foundation of China 11504403

More Information
  • Corresponding author: SONG Bo, E-mail: songbo@mail.ioa.ac.cn
  • Received Date: 20 Nov 2018
  • Accepted Date: 17 Feb 2019
  • Publish Date: 20 Jul 2019
  • With the rapid development of graphic processing unit (GPU), the parallel computing technology could be easily applied in the numerical simulation of ultrasonic sound field based on compute unified device architecture (CUDA). The calculating efficiency could be greatly promoted by using the parallel computing technology. The theory of elastodynamic finite integration technology (EFIT) is illustrated in this article. An EFIT 2D ultrasonic sound field model with point source and absorption boundary in steel material is established by CPU, and on the basis of CPU code, the GPU model is built with parallel computing technology. The flow design procedure and parameter optimization method of GPU model are introduced, including the texture memory use, absorption boundary optimization and data transmission optimization. Based on the comparison of time consumption and average calculating efficiency, the efficiency promotion of EFIT model of CPU and GPU version are quantitatively analyzed. The result reveal that the EFIT model with GPU has much higher calculating efficiency. According to the comparison result, the calculation speed of EFIT model is promoted significantly with the parallel computing technology. And it has broad application prospects in complicated acoustic field simulation.

     

  • loading
  • [1]
    徐娜, 李洋, 周正干, 等.FDTD方法的改进及在超声波声场计算中的应用[J].北京航空航天大学学报, 2013, 39(1):78-82. https://bhxb.buaa.edu.cn/CN/abstract/abstract12507.shtml

    XU N, LI Y, ZHOU Z G, et al.Improvement of finite difference time domain method and its application to calculation of ultrasonic sound fields[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1):78-82(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12507.shtml
    [2]
    FELLINGER P, MARKLEIN R, LANGENBERG K J, et al.Numerical modeling of elastic wave propagation and scattering with EFIT-Elastodynamic finite integration technique[J].Wave Motion, 1995, 21:47-66. doi: 10.1016/0165-2125(94)00040-C
    [3]
    张霞, 何兴无.CUDA平台下的超声弹性成像并行处理算法[J].计算机与数字工程, 2012, 40(9):113-116. doi: 10.3969/j.issn.1672-9722.2012.09.038

    ZHANG X, HE X W.A Parallel algorithm of ultrasound strainimaging based on CUDA[J].Computer & Digital Engineering, 2012, 40(9):113-116(in Chinese). doi: 10.3969/j.issn.1672-9722.2012.09.038
    [4]
    贾春刚, 郭立新, 刘伟.基于GPU的并行FDTD方法在二维粗糙面散射中的应用[J].电波科学学报, 2016, 31(4):683-687. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201604010

    JIA C G, GUO L X, LIU W.GPU-based FDTD method for analysis of electromagnetic scattering from a 2D rough surface[J].Chinese Journal of Radio Science, 2016, 31(4):683-687(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201604010
    [5]
    付小波, 马中高, 余嘉顺, 等.基于多图形处理单元加速的各向异性弹性波正演模拟[J].科学技术与工程, 2018, 18(11):16-22. doi: 10.3969/j.issn.1671-1815.2018.11.002

    FU X B, MA Z G, YU J S, et al.Anisotropic elastic wave forward modeling based on multiple graphics processing unit[J].Science Technology and Engineering, 2018, 18(11):16-22(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.11.002
    [6]
    杨尚琴.地震正演数值模拟仿真计算的并行优化设计方法[J].地球物理学进展, 2017, 32(3):1290-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703046

    YANG S Q. Parallel optimization design method for seismic forward modeling numerical simulation calculation[J].Progress in Geophysics, 2017, 32(3):1290-1296(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703046
    [7]
    FELLINGER F, LANGENBERG K J.Numerical techniques for elastic wave propagation and scattering[C]//Proceedings of the IUTAM Symposium on Elastic Wave Propagation and Ultrasonic Evaluation, 1990: 81-86.
    [8]
    SCHUBERT F.Numerical time-domain modeling of linear and nonlinear ultrasonic wave propagation using finite integration techniques-Theory and applications[J].Ultrasonics, 2004, 42(1-9):221-229. doi: 10.1016/j.ultras.2004.01.013
    [9]
    丁辉.计算超声学——声场分析及应用[M].北京:科学出版社, 2010:33-36.

    DING H.Computational ultrasonics-Analysis and application of ultrasonic fiels[M].Beijing:Science Press, 2010:33-36(in Chinese).
    [10]
    余涛.超声波在混凝土中传播的数值模拟[D].长沙: 中南大学, 2013: 4-9. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2426440

    YU T.Numerical simulation of ultrasonic wave propagation in concrete[D].Changsha: Central South University, 2013: 4-9(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2426440
    [11]
    BERENGER J.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics, 1994, 114(2):185-200. doi: 10.1006/jcph.1994.1159
    [12]
    廉西猛, 单联瑜, 隋志强, 等.地震正演数值模拟完全匹配层吸收边界条件研究综述[J].地球物理学进展, 2015, 30(4):1725-1733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201504027

    LIAN X M, SHAN L Y, SUI Z Q, et al.An overview of research on perfectly matched layers absorbing boundary condition of seismic forward numerical simulation[J].Progress in Geophysics, 2015, 30(4):1725-1733(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201504027
    [13]
    刘洋.波动方程时空域有限差分数值解及吸收边界条件研究进展[J].石油地球物理勘探, 2014, 49(1):35-46. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201401003

    LIU Y.The review of finite difference numerical solution for wave equation in time domain and obsorption boundary conditions[J].Oil Geophysical Prospecting, 2014, 49(1):35-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201401003
    [14]
    秦臻, 任培罡, 姚姚, 等.弹性波正演模拟中PML吸收边界条件的改进[J].地球科学——中国地质大学学报, 2009, 34(4):658-664. http://d.old.wanfangdata.com.cn/Periodical/dqkx200904012

    QIN Z, REN P G, YAO Y, et al.Improvement of PML absorbing boundary conditions in elastic wave forward modeling[J].Earth Science-Journal of China University of Geosciences, 2009, 34(4):658-664(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqkx200904012
    [15]
    卢风顺, 宋君强, 银福康, 等.CPU/GPU协同并行计算研究综述[J].计算机科学, 2011, 38(3):5-9. doi: 10.3969/j.issn.1002-137X.2011.03.002

    LU F S, SONG J Q, YIN F K, et al.Survey of CPU/GPU synergetic parallel computing[J].Computer Science, 2011, 38(3):5-9(in Chinese). doi: 10.3969/j.issn.1002-137X.2011.03.002
    [16]
    SANDERS J, KANDROT E.GPU高性能编程CUDA实战[M].聂雪军, 等, 译.北京: 机械工业出版社, 2011: 84-100.

    SANDERS J, KANDROT E.CUDA by example——An introduction to general-purpose GPU programming[M].NIE X J, et al., translated.Beijing: China Machine Press, 2011: 84-100(in Chinese).
    [17]
    方民权, 张卫民, 方建滨, 等.GPU编程与优化:大众高性能计算[M].北京:清华大学出版社, 2016:273-276.

    FANG M Q, ZHANG W M, FANG J B, et al.GPU programming and code optimization:High performance computing for the masses[M].Beijing:Tsinghua University Press, 2016:273-276(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(859) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return