Citation: | LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690(in Chinese) |
Selective laser melting (SLM) technique in combination with the in-situ resource utilization (ISRU) concept can be an off-world manufacturing solution to the significant engineering challenge on the large-scale construction for extra-terrestrial bases. The feasibility of SLM process applied to the additive manufacturing of lunar in-situ resource was investigated by utilizing lunar regolith simulant. A laser source was utilized to melt the powder locally in a layer-wise manner. In order to successfully fuse the powder into parts with low laser power, high efficiency and high geometrical accuracy, the SLM process parameters were investigated and evaluated by laser volume energy density. The results show that the simulant can be successfully fused into parts with high geometrical accuracy using SLM process with low laser power due to its high absorbance and low mass loss. The fabricated part quality depends on the laser volume energy density:increase of laser volume energy density input results in better mechanical properties of parts; however, excessive laser volume energy density input leads to high distortion of parts. Poor powder fluidity of the raw simulant is observed due to its complex particulate shape and a wide range of particle size distribution. The powder fluidity of the simulant is improved by optimizing its particle size range, resulting in a denser and more uniform powder bed, which can avoid defects within fabricated parts.
[1] |
董鹏, 陈济轮.国外选区激光熔化成型技术在航空航天领域应用现状[J].航天制造技术, 2014(1):1-5. http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm
DONG P, CHEN J L.Current status of selective laser melting for aerospace applications abroad[J].Aerospace Manufacturing Technology, 2014(1):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm
|
[2] |
SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for moon/mars exploration: NASA-20110016205[R].Washington, D.C.: NASA, 2011.
|
[3] |
FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//ASME International Mechanical Engineering Congress and Exposition, 2013: V02AT02A008.
|
[4] |
李志杰, 果琳丽.月球原位资源利用技术研究[J].国际太空, 2017(3):44-50. http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009
LI Z J, GUO L L.Research on the technology of lunar in-situ resource utilization[J].Space International, 2017(3):44-50(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009
|
[5] |
王志浩, 刘宇明, 田东波, 等.月壤原位成型技术工程适用性浅析[J].航天器环境工程, 2018, 35(3):298-306. doi: 10.3969/j.issn.1673-1379.2018.03.017
WANG Z H, LIU Y M, TIAN D B, et al.A brief analysis of the engineering applicability of lunar soil in-situ forming technology[J].Spacecraft Environment Engineering, 2018, 35(3):298-306(in Chinese). doi: 10.3969/j.issn.1673-1379.2018.03.017
|
[6] |
CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a moon outpost exploiting lunar soil[C]//61st International Astronautical Congress.Paris: International Astronautical Federation, 2010: 1-9.
|
[7] |
BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992
|
[8] |
FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326
|
[9] |
GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004
|
[10] |
GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576
|
[11] |
MCKAY D S, HEIKEN G H, VANIMAN D T, et al.The lunar regolith in the lunar sourcebook[M].Cambridge:Cambridge University Press, 1991:285-365.
|
[12] |
李雯.轮式月面探测器牵引通过性的细观力学研究[D].北京: 北京航空航天大学, 2008.
LI W.Meso-mechanical study on trafficability for wheeled lunar rover vehicle[D].Beijing: Beihang University, 2008(in Chinese).
|
[13] |
欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005:12-19.
OUYANG Z Y.Introduction to lunar science[M].Beijing:China Aerospace Press, 2005:12-19(in Chinese).
|
[14] |
贾阳, 申振荣, 党兆龙, 等.模拟月壤研究及其在月球探测工程中的应用[J].航天器环境工程.2014, 31(3):241-247. doi: 10.3969/j.issn.1673-1379.2014.03.002
JIA Y, SHEN Z R, DANG Z L, et al.Lunar soil simulant and its engineering application in lunar exploration program[J].Spacecraft Environment Engineering, 2014, 31(3):241-247(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.03.002
|
[15] |
HUANG Y, ZHAO R, LI W.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):11762-11769. http://cn.bing.com/academic/profile?id=6b266e85fcc4827273fb0c9c03907d74&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
HEIKEN G, VANIMAN D, FRENCH B.Lunar sourcebook:A user's guide to the moon[M].Cambridge:Cambridge University Press, 1991.
|
[17] |
GONG H, RAFI K, GU H, et al.Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J].Additive Manufacturing, 2014, 1-4:87-98. doi: 10.1016/j.addma.2014.08.002
|
[18] |
GOULAS A, FRIEL R J.3D printing with moondust[J].Rapid Prototyping Journal, 2016, 22(6):864-870. doi: 10.1108/RPJ-02-2015-0022
|