Yan Bin, Zhang Shuguang, Sun Jinbiaoet al. Service-oriented integration of coordination logic in air combat simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 489-492. (in Chinese)
Citation: LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690(in Chinese)

In-situ forming of lunar regolith simulant via selective laser melting

doi: 10.13700/j.bh.1001-5965.2018.0690
Funds:

National Natural Science Foundation of China 51705490

National Natural Science Foundation of China 51876004

National Defense Science and Technology Innovation Special Zone Project 

More Information
  • Corresponding author: LI Wen, E-mail: mosquato@buaa.edu.cn
  • Received Date: 23 Nov 2018
  • Accepted Date: 28 May 2019
  • Publish Date: 20 Oct 2019
  • Selective laser melting (SLM) technique in combination with the in-situ resource utilization (ISRU) concept can be an off-world manufacturing solution to the significant engineering challenge on the large-scale construction for extra-terrestrial bases. The feasibility of SLM process applied to the additive manufacturing of lunar in-situ resource was investigated by utilizing lunar regolith simulant. A laser source was utilized to melt the powder locally in a layer-wise manner. In order to successfully fuse the powder into parts with low laser power, high efficiency and high geometrical accuracy, the SLM process parameters were investigated and evaluated by laser volume energy density. The results show that the simulant can be successfully fused into parts with high geometrical accuracy using SLM process with low laser power due to its high absorbance and low mass loss. The fabricated part quality depends on the laser volume energy density:increase of laser volume energy density input results in better mechanical properties of parts; however, excessive laser volume energy density input leads to high distortion of parts. Poor powder fluidity of the raw simulant is observed due to its complex particulate shape and a wide range of particle size distribution. The powder fluidity of the simulant is improved by optimizing its particle size range, resulting in a denser and more uniform powder bed, which can avoid defects within fabricated parts.

     

  • [1]
    董鹏, 陈济轮.国外选区激光熔化成型技术在航空航天领域应用现状[J].航天制造技术, 2014(1):1-5. http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm

    DONG P, CHEN J L.Current status of selective laser melting for aerospace applications abroad[J].Aerospace Manufacturing Technology, 2014(1):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm
    [2]
    SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for moon/mars exploration: NASA-20110016205[R].Washington, D.C.: NASA, 2011.
    [3]
    FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//ASME International Mechanical Engineering Congress and Exposition, 2013: V02AT02A008.
    [4]
    李志杰, 果琳丽.月球原位资源利用技术研究[J].国际太空, 2017(3):44-50.

    LI Z J, GUO L L.Research on the technology of lunar in-situ resource utilization[J].Space International, 2017(3):44-50(in Chinese).
    [5]
    王志浩, 刘宇明, 田东波, 等.月壤原位成型技术工程适用性浅析[J].航天器环境工程, 2018, 35(3):298-306. doi: 10.3969/j.issn.1673-1379.2018.03.017

    WANG Z H, LIU Y M, TIAN D B, et al.A brief analysis of the engineering applicability of lunar soil in-situ forming technology[J].Spacecraft Environment Engineering, 2018, 35(3):298-306(in Chinese). doi: 10.3969/j.issn.1673-1379.2018.03.017
    [6]
    CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a moon outpost exploiting lunar soil[C]//61st International Astronautical Congress.Paris: International Astronautical Federation, 2010: 1-9.
    [7]
    BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992
    [8]
    FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326
    [9]
    GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004
    [10]
    GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576
    [11]
    MCKAY D S, HEIKEN G H, VANIMAN D T, et al.The lunar regolith in the lunar sourcebook[M].Cambridge:Cambridge University Press, 1991:285-365.
    [12]
    李雯.轮式月面探测器牵引通过性的细观力学研究[D].北京: 北京航空航天大学, 2008.

    LI W.Meso-mechanical study on trafficability for wheeled lunar rover vehicle[D].Beijing: Beihang University, 2008(in Chinese).
    [13]
    欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005:12-19.

    OUYANG Z Y.Introduction to lunar science[M].Beijing:China Aerospace Press, 2005:12-19(in Chinese).
    [14]
    贾阳, 申振荣, 党兆龙, 等.模拟月壤研究及其在月球探测工程中的应用[J].航天器环境工程.2014, 31(3):241-247. doi: 10.3969/j.issn.1673-1379.2014.03.002

    JIA Y, SHEN Z R, DANG Z L, et al.Lunar soil simulant and its engineering application in lunar exploration program[J].Spacecraft Environment Engineering, 2014, 31(3):241-247(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.03.002
    [15]
    HUANG Y, ZHAO R, LI W.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):11762-11769.
    [16]
    HEIKEN G, VANIMAN D, FRENCH B.Lunar sourcebook:A user's guide to the moon[M].Cambridge:Cambridge University Press, 1991.
    [17]
    GONG H, RAFI K, GU H, et al.Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J].Additive Manufacturing, 2014, 1-4:87-98. doi: 10.1016/j.addma.2014.08.002
    [18]
    GOULAS A, FRIEL R J.3D printing with moondust[J].Rapid Prototyping Journal, 2016, 22(6):864-870. doi: 10.1108/RPJ-02-2015-0022
  • Relative Articles

    [1]LIU Guanmian, ZHANG Fan, WEN Qing, YANG Kangzhi, QIN Hejun, CHENG Zhihang. Research on installation location of ice detector for large amphibious aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0061
    [2]LI L Y,YANG R N,WANG Y,et al. CAP planning method based on elliptic fitting of optimal detection routes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):293-302 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0978.
    [3]XU Zhiqiang, GUO Yudong, ZHANG Wenqiang, LIU Yatong, LI Ang, WANG Anni. Research on aerodynamic flow field characteristics of guide-injected icing detector[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0767
    [4]CAI L,XIAO Y,HAN H Z,et al. Experimental study on flow and heat transfer of hydrocarbon fuels in additive manufacturing channels at supercritical pressure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):881-891 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0120.
    [5]HE T Y,DONG Y,TAN L M,et al. Kinematic analysis and continuous gait planning of lunar-based equipment in walking state[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):308-316 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0232.
    [6]YIN Jihao, WEI Xiaodong, CUI Linyan, WU Wenjun, ZHANG Xiaoming, LIU Chuankai. A survey of artificial intelligence technology for asteroid exploration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0724
    [7]XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0924.
    [8]YANG Yue, MA Bo-kai, CHENG Long. A cognitive load assessment method for multifactorial flight conflict detection[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0816
    [9]JING Quan, LI Mingtao, WANG Youliang. Optimization and Search Sequence for Transfer Trajectory Status in Callisto Exploration Mission[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0158
    [10]HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0634.
    [11]WANG Xiang-zhang, YU Li-li. Variable Fuzzy Comprehensive Evaluation for Intelligent Manufacturing Digital Twin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0711
    [12]MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271.
    [13]GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243.
    [14]BAN Huan-heng, ZHOU Cong, YAN Xiao-dong. Rapid Trajectory Planning Method for Lunar Direct Ascent and Rendezvous under Emergency Condition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0160
    [15]ZHANG Wen-qiang, CHEN Yi-yi, LEI Guo-qiang, WANG Guang-yu, ZHI Ya-fei, MAO Xue-rui. Data Processing Methodology of the Icing Meteorological Detection in FAR 25 Appendix C[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0569
    [16]CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0677.
    [17]LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0455.
    [18]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [19]CHEN Guanhua, YANG Chihang, ZHANG Chen, ZHANG Hao. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2576-2588. doi: 10.13700/j.bh.1001-5965.2020.0608
    [20]LI Yongping, ZHU Guangwu, ZHENG Xiaoliang, AI Jiangzhao, YAN Yafei, ZHOU Jianhua. In-situ measurement of atmospheric density in very low Earth orbits[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618
  • Cited by

    Periodical cited type(9)

    1. 华建民,肖畅,薛暄译,黄乐鹏. 辐射烧结硬化模拟月壤的物理和力学性能试验研究. 土木与环境工程学报(中英文). 2025(02): 13-19 .
    2. 薛暄译,华建民,肖畅,黄乐鹏. 极端环境下月球基地智能建造技术展望. 前瞻科技. 2024(01): 109-115 .
    3. 张日晗,王统才,李亮,王功. 面向月面原位制造/建造的月壤成型利用技术综述. 宇航学报. 2024(06): 815-830 .
    4. 童小华,袁烽,郑虎,晏雄锋,王超,谢欢,许雄,徐聿升,陈鹏,魏超. 月球资源勘测与原位利用进展及关键挑战. 同济大学学报(自然科学版). 2024(08): 1151-1162 .
    5. Bo Liu,Peng Sun,Wei Yao,Tao Li,Wei Xu. Research progress on the adaptability of lunar regolith simulant-based composites and lunar base construction methods. International Journal of Mining Science and Technology. 2024(10): 1341-1363 .
    6. 刘洋,周建平,张晓天. 增材制造技术在载人航天工程中的应用与展望. 北京航空航天大学学报. 2023(01): 83-91 . 本站查看
    7. 吴伟仁,张哲,敖显泽,贾琇,赵媛,杨洪伦,祖琳,凌丽丽. 深空物质资源利用现状与展望. 科技导报. 2023(19): 6-15 .
    8. 吴灵芝,尹海清,张聪,张瑞杰,王永伟,姜雪,曲选辉. 增材制造月壤原位成形技术的研究现状. 矿产综合利用. 2023(06): 99-107 .
    9. 王超,张光,吕晓辰,姚伟. 模拟月壤激光熔融成型工艺参数试验初探. 航天器环境工程. 2021(05): 575-580 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(1110) PDF downloads(416) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return