Citation: | SUN Yuhang, ZENG Guoqi, LIU Chunhui, et al. SNR estimation algorithm for UAV data link based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1855-1863. doi: 10.13700/j.bh.1001-5965.2018.0724(in Chinese) |
UAV data link communication is subject to natural and artificial interferences. The signal-to-noise ratio (SNR) is an effective evaluation indicator of channel state and communication quality. In order to address insufficient SNR estimation accuracy involved in traditional estimation algorithm, an estimation model which combines convolutional neural networks (CNN) and long short term memory (LSTM) network is proposed. By means of both simulation and actual measurement, a data set of UAV communication signals is constructed with multiple SNRs, modulation modes, fading channels and other information included. In the network training phase, the sample sequence is segmented, CNN-LSTM is used to extract the deep feature of each part, and the model parameters are saved through multiple trainings. In the test phase, the constructed test set is used to verify and test the algorithm, and the SNR estimation value is obtained. Experiments show that compared with traditional SNR estimation algorithm and single-network deep learning method, the proposed algorithm can help achieve the lowest mean square error for different levels of SNR, thus achieving the high-precision estimation of SNR.
[1] |
张文秋, 丁文锐, 刘春辉.一种无人机数据链信道选择和功率控制方法[J].北京航空航天大学学报, 2017, 43(3):583-591. https://bhxb.buaa.edu.cn/CN/abstract/abstract14020.shtml
ZHANG W Q, DING W R, LIU C H.A channel selection and power control method for UAV data link[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):583-591(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14020.shtml
|
[2] |
PAULUZZI D R, BEAUCIEU N C.A comparison of SNR estimation techniques for the AWGN channel[J].IEEE Transactions on Communications, 2000, 48(10):1681-1691. doi: 10.1109/26.871393
|
[3] |
BOUJELBEN M A, BELLILI F.EM algorithm for non-data-aided SNR estimation of linearly-modulated signals over SIMO channels[C]//Lobal Telecommunications Conference.Piscataway, NJ: IEEE Press, 2009: 4464-4469.
|
[4] |
XIAO H F, SHI Y Q, SU W, et al.An investigation of non-data-aided SNR estimation techniques for analog modulation signals[C]//IEEE Sarnoff Symposium.Piscataway, NJ: IEEE Press, 2010: 351-355.
|
[5] |
ÁLVAREZ-DÍAZ M, LÓPEZ-VALCARCE R, MOSQUERA C.SNR estimation for multilevel constellations using higher-order moments[J].IEEE Transactions on Signal Processing, 2010, 58(3):1515-1526. doi: 10.1109/TSP.2009.2036069
|
[6] |
STEPHENNE A, BELLILI F, AFFES S.Moment-based SNR estimation over linearly-modulated wireless SIMO channels[J].IEEE Transactions on Wireless Communications, 2010, 9(2):714-722. doi: 10.1109/TWC.2010.02.081719
|
[7] |
华惊宇, 黄清, 滑翰, 等.一种移动环境下的信噪比估计算法及其在多普勒频移估计中的应用[J].通信学报, 2005, 26(5):135-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=txxb200505022
HUA J Y, HUANG Q, HUA H, et al.A SNR estimation algorithm in mobile environment and its application in Doppler shift estimation[J].Transactions of Communications, 2005, 26(5):135-140(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=txxb200505022
|
[8] |
彭耿, 黄知涛, 陆凤波, 等.中频通信信号信噪比的快速盲估计[J].电子与信息学报, 2010, 32(1):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkxxk201001019
PENG G, HUANG Z T, LU F B, et al.Fast blind estimation of signal-to-noise ratio of IF communication signals[J].Journal of Electronics & Information Technology, 2010, 32(1):102-106(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkxxk201001019
|
[9] |
O'SHEA T J, HOYDIS J.An introduction to deep learning for the physical layer[J].IEEE Transactions on Cognitive Communications & Networking, 2017, 3(4):563-575. https://ieeexplore.ieee.org/document/8054694
|
[10] |
ZHANG D N, DING W R, ZHANG B C, et al.Automatic modulation classification based on deep learning for unmanned aerial vehicles[J].Sensors, 2018, 18(3):924-939. doi: 10.3390/s18030924
|
[11] |
O'SHEA T J, ROY T, CLANCY T C.Over the air deep learning based radio signal classification[J].IEEE Journal of Selected Topics in Signal Processing, 2017, 12(1):168-179. https://ieeexplore.ieee.org/document/8267032
|
[12] |
O'SHEA T J, CORGAN J, CLANCY T C.Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks.Berlin: Springer, 2016: 213-226.
|
[13] |
LÉCUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791
|
[14] |
SUN Y, WANG X, TANG X.Hybrid deep learning for face verification[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2013: 1489-1496.
|
[15] |
SAK H, SENIOR A, BEAUFAYS F.Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition[C]//15th Annual Conference of the International Speech Communication Association, 2014: 338-342.
|
[16] |
GHOSH S, VINYALS O, STROPE B, et al.Contextual LSTM (CLSTM) models for large scale NLP tasks[EB/OL].(2016-05-31)[2018-10-15].https://www.researchgate.net/publication/301857393_Contextual_LSTM_CLSTM_models_for_Large_scale_NLP_tasks.
|
[17] |
WANG J, CAO Z W.Chinese text sentiment analysis using LSTM Network based on L2 and Nadam[C]//IEEE International Conference on Communication Technology.Piscataway, NJ: IEEE Press, 2017: 1891-1895.
|
[18] |
JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I.An empirical exploration of recurrent network architectures[C]//Proceeding of the 32nd International Conference on Machine Learning, 2015, 37: 2342-2350.
|
[19] |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks & Learning Systems, 2015, 28(10):2222-2232.
|