Citation: | ZHAO Beilei, ZHAO Jiguang, CUI Cunyan, et al. Initial velocity and influence factors of tank explosion fragments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1797-1804. doi: 10.13700/j.bh.1001-5965.2018.0746(in Chinese) |
To determine the initial velocity of tank explosion fragments under the propellant detonation, the fragment initial velocity (FIV) model was established based on the energy conservation law, in which the kinetic energy of explosion fragments, the kinetic energy and internal energy of detonation products, the failure energy and the consumed energy for expansion work of tank shell were considered. The FIV model was in good agreement with the calculation results of typical empirical formulas and the experimental data, which verifies the effectiveness of the model. Based on the dimensional analysis method, the key parameters affecting the initial velocity were determined. Based on AUTODYN software, numerical simulation was conducted and the effects of height-diameter ratio, thickness-diameter ratio and air density on fragment initial velocity were analyzed. Results show that the initial velocity of explosion fragment decreases rapidly with the increase of height-diameter ratio, and the attenuation trend slows down when the height-diameter ratio exceeds 1.50. The initial velocity almost linearly decreases with the increase of thickness-diameter ratio. When the explosion height is less than 20 km, as the explosion height rises, the air density decreases, and the initial velocity increases. The air becomes very thin above 40 km, and the influence of shell expansion work on initial velocity can be neglected.
[1] |
陈新华, 聂万胜.液体推进剂爆炸危害性评估方法及应用[M].北京:国防工业出版社, 2005:226-233.
CHEN X H, NIE W S.Evaluation method and application of liquid propellant explosion harmfulness[M].Beijing:National Defense Industry Press, 2005:226-233(in Chinese).
|
[2] |
邢志祥, 蒋军成, 赵晓芳.液化石油气储罐爆炸碎片抛射的蒙特卡罗分析[J].火灾科学, 2004, 13(1):39-42. doi: 10.3969/j.issn.1004-5309.2004.01.006
XING Z X, JIANG J C, ZHAO X F.Monte-Carlo analysis of the flight of missiles from LPG tank explosion[J].Fire Safety Science, 2004, 13(1):39-42(in Chinese). doi: 10.3969/j.issn.1004-5309.2004.01.006
|
[3] |
左哲.基于蒙特卡罗法的储罐爆炸碎片冲击失效模型研究[J].中国安全科学学报, 2012, 22(3):67-72. doi: 10.3969/j.issn.1003-3033.2012.03.011
ZUO Z.Study on models of tank explosion fragments impact failure based on Monte Carlo method[J].China Safety Science Journal, 2012, 22(3):67-72(in Chinese). doi: 10.3969/j.issn.1003-3033.2012.03.011
|
[4] |
潘科, 许开立.储罐爆炸事故中抛射碎片初始速度预测[J].东北大学学报(自然科学版), 2014, 35(7):1047-1050. doi: 10.3969/j.issn.1005-3026.2014.07.030
PAN K, XU K L.Prediction of the fragments initial velocity in tank explosions accident[J].Journal of Northeastern University (Natural Science), 2014, 35(7):1047-1050(in Chinese). doi: 10.3969/j.issn.1005-3026.2014.07.030
|
[5] |
GURNEY R W.The initial velocities of fragments from bombs, shells and grenades: BRL report 405[R].Aberdeen: Ballistic Research Laboratory, 1943.
|
[6] |
张守中.爆炸基本原理[M].北京:国防工业出版社, 1988:503-504.
ZHANG S Z.Basic principles of explosion[M].Beijing:National Defense Industry Press, 1988:503-504(in Chinese).
|
[7] |
印立魁, 蒋建伟.多层球形预制破片战斗部破片初速场的计算模型[J].含能材料, 2014, 22(3):300-305. doi: 10.3969/j.issn.1006-9941.2014.03.006
YIN L K, JIANG J W.Calculation model of initial velocity field on multilayered spherical fragments warhead[J].Chinese Journal of Energetic Materials, 2014, 22(3):300-305(in Chinese). doi: 10.3969/j.issn.1006-9941.2014.03.006
|
[8] |
王卫杰, 沈怀荣, 李怡勇, 等.液体火箭爆炸碎片模型研究[J].上海航天, 2013, 30(6):35-38. doi: 10.3969/j.issn.1006-1630.2013.06.007
WANG W J, SHEN H R, LI Y Y, et al.Study of liquid rocket explosion fragments model[J].Aerospace Shanghai, 2013, 30(6):35-58(in Chinese). doi: 10.3969/j.issn.1006-1630.2013.06.007
|
[9] |
BAKER W E, KULESZ J J, RICHKER R E, et al.Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels: NASA-CR-34906[R].Washington, D.C.: NASA, 1977.
|
[10] |
恽寿榕, 赵衡阳.爆炸力学[M].北京:国防工业出版社, 2005:18-20.
YUN S R, ZHAO H Y.Explosion mechanics[M].Beijing:National Defense Industry Press, 2005:18-20(in Chinese).
|
[11] |
HIROE T, FUJIWARA K, HATA H, et al.Deformation and fragmentation behavior of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations[J].International Journal of Impact Engineering, 2008, 35(12):1578-1586. doi: 10.1016/j.ijimpeng.2008.07.002
|
[12] |
胡永乐, 陈子辰, 王峰超, 等.内部爆炸加载条件下圆柱钢壳的动态断裂[J].机械强度, 2010, 32(1):99-104.
HU Y L, CHEN Z C, WANG F C, et al.Dynamic fracture of cylindrical steel shell under inside-explosion loading[J].Journal of Mechanical Strength, 2010, 32(1):99-104(in Chinese).
|
[13] |
俞鑫炉, 董新龙, 潘顺吉.不同爆炸载荷下TA2钛合金圆管膨胀破坏过程[J].爆炸与冲击, 2018, 38(1):148-154.
YU X L, DONG X L, PAN S J.Fracture behaviors of explosively driven TA2 alloy cylinders under different loadings[J].Explosion and Shock Waves, 2018, 38(1):148-154(in Chinese).
|
[14] |
HOGGATT C, RECHT R.Fracture behavior of tubular bombs[J].Journal of Applied Physics, 1968, 39(3):1856. doi: 10.1063/1.1656442
|
[15] |
孔祥韶, 吴卫国, 杜志鹏, 等.圆柱形战斗部爆炸破片特性研究[J].工程力学, 2014, 31(1):243-249.
KONG X S, WU W G, DU Z P, et al.Research on fragments characteristic of cylindrical warhead[J].Engineering Mechanics, 2014, 31(1):243-249(in Chinese).
|
[16] |
ZHANG Q, MIAO C Q, LIN D C, et al.Relation of fragment with air shock wave intensity for explosion in a shell[J].International Journal of Impact Engineering, 2003, 28:1129-1141. doi: 10.1016/S0734-743X(03)00004-6
|
[17] |
KARPP R R, PREDEBON W W.Calculations of fragment velocities from naturally fragmenting munitions: ADB007377[R].Aberdeen: Ballistic Research Labooratory, 1979.
|
[18] |
JULIEN H L, WOODS S S, RATHGEBER K, et al.Explosive events initiated by pyrovalves: AIAA-1999-2309[R].Reston: AIAA, 1999.
|
[19] |
刘旭阳.TC4钛合金动态本构关系研究[D].南京: 南京航空航天大学, 2010.
LIU X Y.Dynamic constitutive relationship of TC4 titanium alloy[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
|
[1] | CAI Y,SI Y H,WANG Y Z,et al. Analysis and control of influencing factors of cross coupling of flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):141-151 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0968. |
[2] | WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370 |
[3] | WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529. |
[4] | WANG Weijie, GUO Dinghun, LI Xiangyu, GENG Yixuan, QUAN Long. Typical Fault Mechanism Modeling and Simulation of Insulin Pump Sets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0394 |
[5] | WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0522. |
[6] | CHEN Xi, XIE Shuguo, WEI Mengyuan, LI Yuanyuan. Simulation modeling methodology for broadband conducted immunity quantization of analog and analog-digital hybrid chips[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0193 |
[7] | ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0932. |
[8] | LI Wendi, CAO Yueling, MENG Yinan, DAI Wujiao, PAN Lin, ZHOU Shanshi. Methods and Influence Factors Analysis of BeiDou DCB Parameter Solving Based on Regional Monitoring Networks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0353 |
[9] | He Jiawei, Lü Jing, Wang Tianshu, Liu Yingjie. Analysis of liquid sloshing under variable thrust, variable filling liquid ratio, and inclined tank state[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0286 |
[10] | XIAO L F,ZHOU L W,LI X D. Numerical simulation of deformed airfoil modal after blast shock wave[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):341-349 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0244. |
[11] | JIN H B,YANG Y,CHANG Y X,et al. Research on response time of cockpit toggle switch under influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2413-2420 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0657. |
[12] | ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530. |
[13] | JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263 |
[14] | SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0768. |
[15] | REN Jia-lin, GUO Hong-jie, LI Wen-xin, LIANG Guo-zhu, ZHAO Sheng. Design and Experimental Investigation of Adjustable Venturi Tube for Stepless Automatic Tank Pressurization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0260 |
[16] | CHEN Y,ZHOU Z J,WANG J,et al. Structural safety assessment model of large liquid tanks considering environmental disturbance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):981-989 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0350. |
[17] | YAN X Y,ZHOU S D,LU Y,et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1402-1413 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0458. |
[18] | GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243. |
[19] | LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105 |
[20] | YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141 |
1. | 王泽武,张浩然,范海贵. 我国覆土式钢制储存容器研究与应用进展. 石油化工设备. 2024(01): 57-62 . ![]() |