Wu Zhigang, Yang Chao. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(04): 373-376. (in Chinese)
Citation: FU Shengyou, WANG Zhaorui, JIN Shengzhen, et al. High-precision GPS code phase measurement method based on phase stripe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1824-1830. doi: 10.13700/j.bh.1001-5965.2018.0767(in Chinese)

High-precision GPS code phase measurement method based on phase stripe

doi: 10.13700/j.bh.1001-5965.2018.0767
Funds:

National Key R & D Program of China 2016YFB0501900

National Natural Science Foundation of China 11603041

More Information
  • Corresponding author: WANG Zhaorui, E-mail: zhaorui_w@nao.cas.cn
  • Received Date: 26 Dec 2018
  • Accepted Date: 02 Feb 2019
  • Publish Date: 20 Sep 2019
  • When GPS receiver measures the propagation distance from satellites to the receiver, it can usually obtain two basic measurement values, code phase and carrier phase. Although the precision of carrier phase measurement is higher than that of code phase measurement, there exists the integer ambiguity problem, whose cost is much higher than that of using code phase technique in practical application. Therefore, based on the phase stripe technique, a high-precision code phase measurement method was proposed. On the basis of the traditional code tracking loop, the high-precision code phase measurement value is obtained by extracting the frequency of the phase stripes of the cross-correlation power spectrum, so as to assemble a high-precision code pseudo-range. Simulation results show that the precision of code phase measurement is about 0.37 m when the SNR is -15 dB, which is better than the tracking accuracy of 1.82 m under the same condition of traditional delay lock loop. At the same time of obtaining the higher-precision code phase measurements, the integer ambiguity of the carrier phase does not need to be solved, which has research significance and application value for improving the GPS positioning precision.

     

  • [1]
    谢钢.GPS原理与接收机设计[M].北京:电子工业出版社, 2017.

    XIE G.Principles of GPS and receiver design[M].Beijing:Publishing House of Electronics Industry, 2017(in Chinese).
    [2]
    鲁郁.北斗/GPS双模软件接收机原理与实现技术[M].北京:电子工业出版社, 2016.

    LU Y.BeiDou/GPS dual-mode software receiver principle and implementation technology[M].Beijing:Publishing House of Electronics Industry, 2016(in Chinese).
    [3]
    MISRA P, ENGE P.Global positioning system:Signals, measurements, and performance[M].2nd ed.Warszawa:Ganga-Jamuna Press, 2006.
    [4]
    罗柳镇.高精度卫星测距技术研究与实现[D].南京: 南京理工大学, 2016: 37-43.

    LUO L Z.Research and realization of high precision satellite ranging technology[D].Nanjing: Nanjing University of Science and Technology, 2016: 37-43(in Chinese).
    [5]
    刘盟超, 赵丙风.GNSS接收机自适应带宽伪码跟踪环路设计[J].无线电通信技术, 2017, 43(4):64-66. doi: 10.3969/j.issn.1003-3114.2017.04.15

    LIU M C, ZHAO B F.Design of adaptive bandwidth DLL for GNSS receivers[J].Radio Communications Technology, 2017, 43(4):64-66(in Chinese). doi: 10.3969/j.issn.1003-3114.2017.04.15
    [6]
    邓中亮, 赵洋, 尹露, 等.一种提高伪距测量精度方法研究[C]//第六届中国卫星导航学术年会论文集.北京: 中国卫星导航系统管理办公室学术交流中心, 2015: 4.

    DENG Z L, ZHAO Y, YIN L, et al.An improved pseudo-range measurement method research[C]//6th China Satellite Navigation Conference(CSNC).Beijing: Academic Exchange Centre of China Satellite Navigation Office, 2015: 4(in Chinese).
    [7]
    龚国辉, 李思昆.提高DSSS信号PN码相位测量精度的三点二次插值法[J].通信学报, 2007, 28(2):130-133. doi: 10.3321/j.issn:1000-436X.2007.02.021

    GONG G H, LI S K.Improving DSSS signal PN code phase measurement precision by 3-points quadratic interpolation[J].Journal on Communications, 2007, 28(2):130-133(in Chinese). doi: 10.3321/j.issn:1000-436X.2007.02.021
    [8]
    罗海军, 彭卫东, 李明阳, 等.基于分段直线拟合的伪随机码相位测量法[J].计算机测量与控制, 2015, 23(3):727-729. doi: 10.3969/j.issn.1671-4598.2015.03.015

    LUO H J, PENG W D, LI M Y, et al.Method of phase measurement of PN codes based on piecewise linear fitting[J].Computer Measurement and Control, 2015, 23(3):727-729(in Chinese). doi: 10.3969/j.issn.1671-4598.2015.03.015
    [9]
    胡修林, 张俊, 杨灵.直接序列扩频通信系统中PN码相位的精确测量方法[J].电讯技术, 2005, 45(3):128-131. doi: 10.3969/j.issn.1001-893X.2005.03.029

    HU X L, ZHANG J, YANG L.A method for accurately measuring the phase of PN code in DSSS systems[J].Telecommunication Engineering, 2005, 45(3):128-131(in Chinese). doi: 10.3969/j.issn.1001-893X.2005.03.029
    [10]
    张波, 郭英, 齐子森, 等.PN码相位精确测量的累加最小二乘法[J].北京航空航天大学学报, 2016, 42(10):2265-2270. https://bhxb.buaa.edu.cn/CN/abstract/abstract13737.shtml

    ZHANG B, GUO Y, QI Z S, et al.Precise measurement of PN code phase by accumulative least square method[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2265-2270(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13737.shtml
    [11]
    PIERSOL A G.Time delay estimation using phase data[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):471-477. doi: 10.1109/TASSP.1981.1163555
    [12]
    熊庆旭, 刘锋, 常青.信号与系统[M].北京:高等教育出版社, 2011.

    XIONG Q X, LIU F, CHANG Q.Signals and systems[M].Beijing:Higher Education Press, 2011(in Chinese).
    [13]
    BRAASCH M S, VAN DIERENDONCK A J.GPS receiver architectures and measurements[J].Proceedings of the IEEE, 1999, 87(1):48-64. doi: 10.1109/5.736341
    [14]
    王松瑞.北斗二代接收机捕获跟踪算法研究与实现[D].西安: 西安电子科技大学, 2017: 37-38.

    WANG S R.Research and implementation of the BD-Ⅱ receiver acquisition and tracking algorithm[D].Xi'an: Xidian University, 2017: 37-38(in Chinese).
    [15]
    VAN DIERENDONCK A J, FENTON P, FORD T.Theory and performance of narrow correlator spacing in a GPS receiver[J].Navigation, 1992, 39(3):265-283. doi: 10.1002/navi.1992.39.issue-3
  • Relative Articles

    [1]SONG Jingwen, ZHANG Shuang, LI Kaixiang. Adaptive Bayesian Model Correction Method Based on Varying Observation Domain[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0653
    [2]LI Fan, LIU Chenyang, SUN Zhibo, DONG Zhenbo, QIAN Weipeng. A high-capacity image steganography algorithm based on end-to-end deep learning networks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0302
    [3]MA A H,PAN S. Edge cloud service migration algorithm based on Markov decision process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1931-1939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0499.
    [4]ZHAO Z W,HAN Y Q. Risk assessment of violations of air freight forwarders[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3654-3665 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0876.
    [5]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [6]WANG J H,TANG G D,CAO J,et al. Fault diagnosis method of BN ball mill rolling bearing based on AESL-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1138-1146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0428.
    [7]JIN B,LI R,WANG D,et al. Service performance assessment method of single frequency SBAS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3062-3073 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0785.
    [8]LIU H B,SHI X M,QU J B,et al. Design of Bayesian acceptance scheme for missile hit accuracy based on multinomial distribution[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1991-2000 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0516.
    [9]CHEN Jiusheng, YU Zhuoyang, GUO Runxia, WU Jun. A fault propagation path analysis method for A320 air conditioning system based on improved Bayesian network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0224
    [10]LIU B D,YU J S,HAN D Y,et al. Complex equipment troubleshooting strategy generation based on Bayesian networks and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1354-1364 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0449.
    [11]WANG Z D,GUANG C H,WANG L Q,et al. Design and implementation of robot-assisted subretinal injection system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2406-2414 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0667.
    [12]HAN Xiao, ZHOU Ying, HUANG Hai, SHAO Jing-yi. Design and Verification of High-precision Dynamic Temperature Control System[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0297
    [13]XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0717.
    [14]WU Y T,LU Z,SONG H J,et al. Operation risk assessment of civil aircraft for multiple wear-out failure modes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2807-2816 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0739.
    [15]WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0581.
    [16]ZHANG Wei, CHANG Ben-qiang, YANG Xu, XIONG Xiao. Fire source localization prediction for long and short term memory networks based on Bayesian optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0482
    [17]CHEN Tong, LIU Haobang, HU Tao. Bayesian identification test design of missile damage effectiveness based on multiple damage grades standards[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0282
    [18]SUN D,GAO D,ZHENG J H,et al. UAV reinforcement learning control algorithm with demonstrations[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1424-1433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0466.
    [19]MENG Guang-lei, CONG Ze-lin, SONG Bin, LI Ting-ting, WANG Chen-guang, ZHOU Ming-zhe. Review of Bayesian network structure learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0445
    [20]LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, TOMAS DIAS A.M., WANG Zhisheng, YANG Zhong. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(774) PDF downloads(341) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return