Citation: | WANG Na, ZHANG Quan, LIU Yi, et al. Medical low-dose CT image denoising based on variable order variational model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1757-1764. doi: 10.13700/j.bh.1001-5965.2018.0775(in Chinese) |
Low-dose CT (LDCT) is widely used for clinical diagnosis to reduce radiation risk to patients. However, the radiation dose reduction introduces mottle noise and streak artifacts into the reconstructed LDCT images. In this paper, a post-processing technique is proposed based on variable order variational model to improve the LDCT image quality. The proposed variational model employs the edge indicator to control the order of variation, which can alternate between the first order total variation (TV) regularizer and second order bounded Hessian(BH) regularizer based on the image feature. Moreover, the proposed model is solved by split Bregman algorithm based on fast Fourier transform (FFT). The proposed model effectively suppresses mottle noise and streak artifacts, meanwhile preserving structure in reference to high-dose CT (HDCT) images. The reconstructed images and experimental data indicate that the proposed model has better quality than some existing state-of-the-art models.
[1] |
ZHU Y, ZHAO M, ZHAO Y, et al.Noise reduction with low dose CT data based on a modified ROF model[J].Optics Express, 2012, 20(16):17987-18004. doi: 10.1364/OE.20.017987
|
[2] |
CHEN Y, YIN X, SHI L, et al.Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing[J].Physics in Medicine and Biology, 2013, 58(16):5803-5820. doi: 10.1088/0031-9155/58/16/5803
|
[3] |
ZHANG C, ZHANG T, LI M, et al.Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares[J].BioMedical Engineering OnLine, 2016, 15(1):66. doi: 10.1186/s12938-016-0193-y
|
[4] |
LEE D, LEE J, KIM H, et al.A feasibility study of low-dose single-scan dual-energy cone-beam CT in many-view under-sampling framework[J].IEEE Transactions on Medical Imaging, 2017, 36(12):2578-2587. doi: 10.1109/TMI.2017.2765760
|
[5] |
CHEN Y, LIU J, HU Y, et al.Discriminative feature representation:An effective postprocessing solution to low dose CT imaging[J].Physics in Medicine and Biology, 2017, 62(6):2103-2131. doi: 10.1088/1361-6560/aa5c24
|
[6] |
CHEN Y, LIU J, XIE L, et al.Discriminative prior-prior image constrained compressed sensing reconstruction for low-dose CT imaging[J].Scientific Reports, 2017, 7(1):13868. doi: 10.1038/s41598-017-13520-y
|
[7] |
FRUSH D P, DONNELLY L F, ROSEN N S.Computed tomography and radiation risks:What pediatric health care providers should know[J].Pediatrics, 2003, 112(4):951-957. doi: 10.1542/peds.112.4.951
|
[8] |
BRENNER D J, HALL E J.Computed tomography-An increasing source of radiation exposure[J].New England Journal of Medicine, 2007, 357(22):2277-2284. doi: 10.1056/NEJMra072149
|
[9] |
CHEN Y, SHI L, YANG J, et al.Radiation dose reduction with dictionary learning based processing for head CT[J].Australasian Physical and Engineering Sciences in Medicine, 2014, 37(3):483-493. doi: 10.1007/s13246-014-0276-7
|
[10] |
YANG Q, YAN P, ZHANG Y, et al.Low dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J].IEEE Transactions on Medical Imaging, 2018, 37(6):1348-1357. doi: 10.1109/TMI.2018.2827462
|
[11] |
LIU J, MA J, ZHANG Y, et al.Discriminative feature representation to improve projection data inconsistency for low dose CT imaging[J].IEEE Transactions on Medical Imaging, 2017, 36(12):2499-2509. doi: 10.1109/TMI.2017.2739841
|
[12] |
HASAN A M, MELLI A, WAHID K A, et al.Denoising low-dose CT images using multi-frame blind source separation and block matching filter[J].IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2(4):279-287. doi: 10.1109/TRPMS.2018.2810221
|
[13] |
DIWAKAR M, KUMAR M.CT image denoising using NLM and correlation-based wavelet packet thresholding[J].IET Image Processing, 2018, 12(5):708-715. doi: 10.1049/iet-ipr.2017.0639
|
[14] |
YOU C, YANG Q, SHAN H, et al.Structure-sensitive multi-scale deep neural network for low-dose CT denoising[J].IEEE Access, 2018, 6:41839-41855. doi: 10.1109/Access.6287639
|
[15] |
LIU Y, ZHANG Y.Low-dose CT restoration via stacked sparse denoising autoencoders[J].Neurocomputing, 2018, 284:80-89. doi: 10.1016/j.neucom.2018.01.015
|
[16] |
罗立民, 胡轶宁, 陈阳.低剂量CT成像的研究现状与展望[J].数据采集与处理, 2015, 30(1):24-34.
LUO L M, HU Y N, CHEN Y.Research status and prospect for low-dose CT imaging[J].Data Acquisition and Processing, 2015, 30(1):24-34(in Chinese).
|
[17] |
LU W, DUAN J, QIU Z, et al.Implementation of high-order variational models made easy for image processing[J].Mathematical Methods in the Applied Sciences, 2016, 39(14):4208-4233. doi: 10.1002/mma.v39.14
|
[18] |
DUAN J, QIU Z, LU W, et al.An edge-weighted second order variational model for image decomposition[J].Digital Signal Processing, 2016, 49:162-181. doi: 10.1016/j.dsp.2015.10.010
|
[19] |
DUAN J, WARD W O C, SIBBETT L, et al.Introducing anisotropic tensor to high order variational model for image restoration[J].Digital Signal Processing, 2017, 69:323-336. doi: 10.1016/j.dsp.2017.07.001
|
[20] |
CHEN Y, YANG Z, HU Y, et al.Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means[J].Physics in Medicine and Biology, 2012, 57(9):2667-2688. doi: 10.1088/0031-9155/57/9/2667
|
[21] |
BUADES A, COLL B, MOREL J M.A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2005, 2: 60-65.
|
[22] |
WANG J, LU H, WEN J, et al.Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography[J].IEEE Transactions on Biomedical Engineering, 2008, 55(3):1022-1031. doi: 10.1109/TBME.2007.909531
|
[1] | TIAN S,WANG Z W,CAO X P,et al. Identification of pulsatile tinnitus and visualization of high pathogenic regions based on CT images[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):625-632 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0074. |
[2] | GUO Z J,LU H,LIU N,et al. Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):389-396 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0050. |
[3] | ZHAO Guiling, WANG Jinbao, WANG Yuan. A SINS/GNSS fault detection and robustness adaptive algorithm based on maximum smooth bounded layer width[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0777 |
[4] | LI Dan, CUI Wen-feng, CHEN Gui-peng. ptimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0356 |
[5] | LI Lu, CHEN Ke-yan, LIU Chen-yang, SHI Zhen-wei. An anchor-free optical remote sensing image ship detection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0852 |
[6] | HAI Chao, TIAN Xin, ZHANG Hong, TAN Da-long, HE Yi-xin, MENG Fan-yong, YANG Min. A Deep Learning-Based Dual-Domain Information Method for CT Metal Artifact Reduction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0753 |
[7] | YANG Jingyu, LYU Panjie, DANG Jianwu, WANG Feng, HUO Jiuyuan. CTFI-Net: A remote sensing image change detection method based on feature interaction and alignment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0432 |
[8] | ZHANG Zhihao, DU Lixia, HAO Ziwei, HOU Yue. Multi-core contextual feature-guided algorithm for trusted detection of UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0548 |
[9] | ZHANG Anqi, CAO Ronggang, ZHOU Yu, LI Jiawu, CAO Yuxi, YU Yongbin. Research on Fast and High Precision Signal Processing Method for FM Fuze Based on 2D-FFT and 2D-CFAR[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0827 |
[10] | ZHENG Shen-hai, LIU Xiao-xuan, WANG Rui-hao. Multi-organ Detection Method in Abdominal CT Images Based on Deep Differentiable Random Forest[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0769 |
[11] | CHEN Wankun, HU Yikun, GAO Feng, DONG Junyu, GAN Yanhai. Hyperspectral image denoising method based on global and local dynamic attention[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0463 |
[12] | GUO Hongwei, ZHU Ce, CHEN Junjie, LUO Lei. CTU-Level Optimization Algorithm for VVC Low-Delay Hierarchical Coding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0453 |
[13] | ZHOU Hao, TAO Tao. Single nighttime image dehazing algorithm based on maximum reflectivity prior and variational regularization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0457 |
[14] | WANG Yue, ZHANG Xiong, SHANGGUAN Hong, CUI Xueying, ZHANG Pengcheng, GUI Zhiguo. A low-dose CT deep unfolding network based on a sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0049 |
[15] | LIN Y H,LI C B. Multidimensional degradation data generation method based on variational autoencoder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2617-2627 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0760. |
[16] | CHEN X M,ZHU Y C,LING J,et al. Energy-efficiency characteristic investigation of rotational inertia hydraulic converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0570. |
[17] | ZHANG Zhi, YI Hua-hui, ZHENG Jin. Few-Shot Object Detection of Aerial Image Based on Language Guidance Vision[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0491 |
[18] | HAN X L,SHANGGUAN H,ZHANG X,et al. A low-dose CT image denoising method based on artifact estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):491-502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0263. |
[19] | HU Kai, ZHAO Jian, LIU Yu, NIU Yukai, JI Gang. Images inpainting via structure guidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1269-1277. doi: 10.13700/j.bh.1001-5965.2021.0004 |
[20] | YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053 |