Citation: | WANG Na, ZHANG Quan, LIU Yi, et al. Medical low-dose CT image denoising based on variable order variational model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1757-1764. doi: 10.13700/j.bh.1001-5965.2018.0775(in Chinese) |
Low-dose CT (LDCT) is widely used for clinical diagnosis to reduce radiation risk to patients. However, the radiation dose reduction introduces mottle noise and streak artifacts into the reconstructed LDCT images. In this paper, a post-processing technique is proposed based on variable order variational model to improve the LDCT image quality. The proposed variational model employs the edge indicator to control the order of variation, which can alternate between the first order total variation (TV) regularizer and second order bounded Hessian(BH) regularizer based on the image feature. Moreover, the proposed model is solved by split Bregman algorithm based on fast Fourier transform (FFT). The proposed model effectively suppresses mottle noise and streak artifacts, meanwhile preserving structure in reference to high-dose CT (HDCT) images. The reconstructed images and experimental data indicate that the proposed model has better quality than some existing state-of-the-art models.
[1] |
ZHU Y, ZHAO M, ZHAO Y, et al.Noise reduction with low dose CT data based on a modified ROF model[J].Optics Express, 2012, 20(16):17987-18004. doi: 10.1364/OE.20.017987
|
[2] |
CHEN Y, YIN X, SHI L, et al.Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing[J].Physics in Medicine and Biology, 2013, 58(16):5803-5820. doi: 10.1088/0031-9155/58/16/5803
|
[3] |
ZHANG C, ZHANG T, LI M, et al.Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares[J].BioMedical Engineering OnLine, 2016, 15(1):66. doi: 10.1186/s12938-016-0193-y
|
[4] |
LEE D, LEE J, KIM H, et al.A feasibility study of low-dose single-scan dual-energy cone-beam CT in many-view under-sampling framework[J].IEEE Transactions on Medical Imaging, 2017, 36(12):2578-2587. doi: 10.1109/TMI.2017.2765760
|
[5] |
CHEN Y, LIU J, HU Y, et al.Discriminative feature representation:An effective postprocessing solution to low dose CT imaging[J].Physics in Medicine and Biology, 2017, 62(6):2103-2131. doi: 10.1088/1361-6560/aa5c24
|
[6] |
CHEN Y, LIU J, XIE L, et al.Discriminative prior-prior image constrained compressed sensing reconstruction for low-dose CT imaging[J].Scientific Reports, 2017, 7(1):13868. doi: 10.1038/s41598-017-13520-y
|
[7] |
FRUSH D P, DONNELLY L F, ROSEN N S.Computed tomography and radiation risks:What pediatric health care providers should know[J].Pediatrics, 2003, 112(4):951-957. doi: 10.1542/peds.112.4.951
|
[8] |
BRENNER D J, HALL E J.Computed tomography-An increasing source of radiation exposure[J].New England Journal of Medicine, 2007, 357(22):2277-2284. doi: 10.1056/NEJMra072149
|
[9] |
CHEN Y, SHI L, YANG J, et al.Radiation dose reduction with dictionary learning based processing for head CT[J].Australasian Physical and Engineering Sciences in Medicine, 2014, 37(3):483-493. doi: 10.1007/s13246-014-0276-7
|
[10] |
YANG Q, YAN P, ZHANG Y, et al.Low dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J].IEEE Transactions on Medical Imaging, 2018, 37(6):1348-1357. doi: 10.1109/TMI.2018.2827462
|
[11] |
LIU J, MA J, ZHANG Y, et al.Discriminative feature representation to improve projection data inconsistency for low dose CT imaging[J].IEEE Transactions on Medical Imaging, 2017, 36(12):2499-2509. doi: 10.1109/TMI.2017.2739841
|
[12] |
HASAN A M, MELLI A, WAHID K A, et al.Denoising low-dose CT images using multi-frame blind source separation and block matching filter[J].IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2(4):279-287. doi: 10.1109/TRPMS.2018.2810221
|
[13] |
DIWAKAR M, KUMAR M.CT image denoising using NLM and correlation-based wavelet packet thresholding[J].IET Image Processing, 2018, 12(5):708-715. doi: 10.1049/iet-ipr.2017.0639
|
[14] |
YOU C, YANG Q, SHAN H, et al.Structure-sensitive multi-scale deep neural network for low-dose CT denoising[J].IEEE Access, 2018, 6:41839-41855. doi: 10.1109/Access.6287639
|
[15] |
LIU Y, ZHANG Y.Low-dose CT restoration via stacked sparse denoising autoencoders[J].Neurocomputing, 2018, 284:80-89. doi: 10.1016/j.neucom.2018.01.015
|
[16] |
罗立民, 胡轶宁, 陈阳.低剂量CT成像的研究现状与展望[J].数据采集与处理, 2015, 30(1):24-34.
LUO L M, HU Y N, CHEN Y.Research status and prospect for low-dose CT imaging[J].Data Acquisition and Processing, 2015, 30(1):24-34(in Chinese).
|
[17] |
LU W, DUAN J, QIU Z, et al.Implementation of high-order variational models made easy for image processing[J].Mathematical Methods in the Applied Sciences, 2016, 39(14):4208-4233. doi: 10.1002/mma.v39.14
|
[18] |
DUAN J, QIU Z, LU W, et al.An edge-weighted second order variational model for image decomposition[J].Digital Signal Processing, 2016, 49:162-181. doi: 10.1016/j.dsp.2015.10.010
|
[19] |
DUAN J, WARD W O C, SIBBETT L, et al.Introducing anisotropic tensor to high order variational model for image restoration[J].Digital Signal Processing, 2017, 69:323-336. doi: 10.1016/j.dsp.2017.07.001
|
[20] |
CHEN Y, YANG Z, HU Y, et al.Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means[J].Physics in Medicine and Biology, 2012, 57(9):2667-2688. doi: 10.1088/0031-9155/57/9/2667
|
[21] |
BUADES A, COLL B, MOREL J M.A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2005, 2: 60-65.
|
[22] |
WANG J, LU H, WEN J, et al.Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography[J].IEEE Transactions on Biomedical Engineering, 2008, 55(3):1022-1031. doi: 10.1109/TBME.2007.909531
|
[1] | PENG Yi, SUN Chang, YANG Qingqing, LI Hui, WANG Jianming. Swin Transformer-Based Semantic Image Transmission with Model Division Multiplexing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0542 |
[2] | WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848. |
[3] | CHEN J C,YANG X,MA Y X,et al. Model-free adaptive cascade control for temperature system of a hot wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1713-1720 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0528. |
[4] | DAI Rui, LI Jie, HE Li-huo, GAO Xin-bo. Light-weight BiLSTM-based data association between echoes and tracks for multi-radar multi-target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0013 |
[5] | LI Ruiqi, HUANG Yongqiang, LIU Liang, YUE Meng. Data Security Transmission Protection Mechanism for L-band Digital Aeronautical Communications System Based on Domestic Cryptographic Algorithms[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0656 |
[6] | LI Yan, WAN Zheng, DENG Cheng-zhi, WANG Sheng-qian. Edge intelligent transmission optimization of emergency surveillance video based on intra-clustered dynamic federated deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0378 |
[7] | WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370 |
[8] | GAO Y,HU Y,CHEN J Y,et al. Improved predictor-corrector guidance method for time-coordination entry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1721-1730 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0530. |
[9] | CHEN Yong, ZHOU FangChun, DONG Ke. Dual discriminator fusion of infrared and visible light images for visual saliency enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0072 |
[10] | LUO Q J,TIAN X,GAO Q J. Rotation binocular stereo rectification algorithm based on hierarchical spatial consistency[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1551-1559 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0611. |
[11] | XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0085. |
[12] | SHI Z,WANG B,YANG B,et al. Single-event radiation hardening method for 14 nm pFinFET device[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3335-3342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0071. |
[13] | XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0045. |
[14] | ZHANG X M,NIE P F,GAO Z B,et al. Influence of temperature stress on fatigue damage of airfield pavement slab[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2558-2566 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0729. |
[15] | HAN Xiao, ZHOU Ying, HUANG Hai, SHAO Jing-yi. Design and Verification of High-precision Dynamic Temperature Control System[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0297 |
[16] | ZHANG Yun-jie, ZHOU Jie-xin, ZHANG Feng-zhe, ZHOU Rui, ZOU Ting. Reachability Evaluation Method for Ballistic Missile Based on Extended Boundary Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0630 |
[17] | GUO Q,WU T H,XU W,et al. Target tracking algorithm based on saliency awareness and consistency constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2244-2257 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0688. |
[18] | TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685 |
[19] | LUO Wudi, REN Junxue, LI Zhihui, TANG Haibin. Study on radiation characteristics of multi-phase plumes containing ice crystals in orbit-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0439 |
[20] | SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705 |