TIAN Yongliang, WANG Yongqing, XIONG Peisen, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945. doi: 10.13700/j.bh.1001-5965.2019.0051(in Chinese)
Citation: TIAN Yongliang, WANG Yongqing, XIONG Peisen, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945. doi: 10.13700/j.bh.1001-5965.2019.0051(in Chinese)

Structured simulation platform architecture for fighter cloud operations

doi: 10.13700/j.bh.1001-5965.2019.0051
More Information
  • Corresponding author: TIAN Yongliang, E-mail: tianyongliang1@buaa.edu.cn
  • Received Date: 16 Feb 2019
  • Accepted Date: 29 Mar 2019
  • Publish Date: 20 Oct 2019
  • With the rapid development and wide application of information technology such as big data, cloud computing, Internet of Things, and mobile Internet, new combat modes continue to emerge. The "cloud operation" with the core of the task distributed command & control process becomes a brand-new cross-domain full-dimensional combat style. Based on the analysis of the feature of combat cloud and cloud operation, combined with conventional combat simulation process, cloud operation system simulation process is proposed, and the cloud operations structured simulation platform architecture design and system function design are proposed. Through cloud operation structured simulation examples, it compares the observe-orient-decide-act (OODA) cycle of traditional combat styles with cloud operation styles. The results show that the cloud operation style can effectively shorten the OODA cycle time.

     

  • [1]
    FAHRENKRUG D.21st century warfare: The combat cloud[EB/OL].(2014-09-15)[2019-01-09].
    [2]
    胡悦.美国空军"作战云"发展现状与展望[J].现代导航, 2017(1):74-78.

    HU Y.Air Force "combat cloud" development and prospect[J].Modern Navigation, 2017(1):74-78(in Chinese).
    [3]
    SCHANZ M V.Combat networks that can survive high-threat environments[J].Air Force Magazine, 2014, 97(7):38-41.
    [4]
    SCHANZ M V.The combat cloud[J].Air Force Magazine, 2014(7):38-41.
    [5]
    DEPTULA D A.A new era for command and control of aerospace operations[J].Air & Space Power Journal, 2014(4):5-6.
    [6]
    罗金亮, 宿云波, 张恒新."作战云"体系构建初探[J].火控雷达技术, 2015, 44(3):26-30. doi: 10.3969/j.issn.1008-8652.2015.03.007

    LUO J L, SU Y B, ZHANG H X.Research on system construction of combat cloud[J].Fire Control Radar Technology, 2015, 44(3):26-30(in Chinese). doi: 10.3969/j.issn.1008-8652.2015.03.007
    [7]
    GOZTEPE K, CEHRELI I, SENSOY S E.A decision framework for combat cloud computing strategy[C]//6th International Information Security & Cryptology Conference, 2013, 9: 28-31.
    [8]
    李飞, 胡荣, 胡剑波, 等.空天云作战指挥控制效能评估[C]//第六届中国指挥控制大会.北京: 电子工业出版社, 2018: 904-909.

    LI F, HU R, HU J B, et al.Research on command and control effectiveness evaluation of aerospace cloud operations[C]//6th China Command and Control Conference Proceedings.Beijing: Publishling House of Electronics Industry, 2018: 904-909(in Chinese).
    [9]
    梁维泰, 毛晓彬, 黄松华.面向空中战斗云的协同任务规划框架研究[C]//第六届中国指挥控制大会.北京: 电子工业出版社, 2018: 37-41.

    LIANG W T, MAO X B, HUANG S H.Framework of cooperative mission planning for air combat cloud[C]//6th China Command and Control Conference Proceedings.Beijing: Publishling House of Electronics Industry, 2018: 37-41(in Chinese).
    [10]
    时东飞, 蔡疆, 黄松华, 等.美国空军"战斗云"作战理念及启示[J].指挥信息系统与技术, 2017, 8(3):27-32.

    SHI D F, CAI J, HUANG S H, et al.Operational concept and enlightenment of United States Air Force "combat cloud"[J].Command Information System and Technology, 2017, 8(3):27-32(in Chinese).
    [11]
    刘鹏, 戴锋, 闫坤.基于复杂网络的"云作战"体系模型及仿真[J].指挥控制与仿真, 2016, 38(6):6-11. doi: 10.3969/j.issn.1673-3819.2016.06.002

    LIU P, DAI F, YAN K.System model and simulation of "cloud operations" based on complex network[J].Command Control & Simulation, 2016, 38(6):6-11(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.06.002
    [12]
    WAN K, GAO X, LIU X, et al.A cloud cooperative attack system for networking anti-stealth combat[C]//2013 4th IEEE International Conference on Software Engineering and Service Science(ICSESS).Piscataway, NJ: IEEE Press, 2013: 515-520.
    [13]
    MA S D, ZHANG H Z, YANG G Q.Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J].Aerospace Science and Technology, 2017, 67(8):49-53.
    [14]
    HUANG Y Y.Modeling and simulation method of the emergency response systems based on OODA[J].Knowledge-Based Systems, 2015, 89:527-540. doi: 10.1016/j.knosys.2015.08.020
    [15]
    赵国宏.作战云体系结构研究[J].指挥与控制学报, 2015, 1(3):292-295.

    ZHAO G H.Architecture of combat clouds[J].Journal of Command and Control, 2015, 1(3):292-295(in Chinese).
  • Relative Articles

    [1]LIANG Chengwu, JIANG Songqi, LIU Yalong, TIE Yun, LIU Haichang, GAO Lei, FAN Xiaowei. DPV fault detection with multi-modal UAV video and cloud platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0468
    [2]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [3]WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529.
    [4]WANG Weijie, GUO Dinghun, LI Xiangyu, GENG Yixuan, QUAN Long. Typical Fault Mechanism Modeling and Simulation of Insulin Pump Sets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0394
    [5]WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0522.
    [6]CHEN Xi, XIE Shuguo, WEI Mengyuan, LI Yuanyuan. Simulation modeling methodology for broadband conducted immunity quantization of analog and analog-digital hybrid chips[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0193
    [7]JIANG Y H,GUO T,GONG Q,et al. Analysis and modeling method of civil aircraft emergency scenario[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):839-849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0339.
    [8]ZHANG S F,LI Y Y,ZHANG T. Adaptive Monte Carlo localization algorithm based on fast affine template matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2898-2905 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0001.
    [9]YAN J T,LIU S G. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3500-3510 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0072.
    [10]LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0680.
    [11]XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0635.
    [12]WANG Xiao, MA Jun, XIONG Xin, CHEN Jing-yu. Dynamic modeling and analysis of rolling bearing with raceway spalling defect[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0565
    [13]PAN J X,JING B,JIAO X X,et al. Degradation modeling of oxygen concentrator in multiple stress coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):472-481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0260.
    [14]WANG Z X,WAN Z Q,WANG X Z,et al. Fast stability analysis method for composite panel with variable angle tow fiber[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):353-366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0259.
    [15]ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530.
    [16]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [17]GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243.
    [18]XUE X R,HUANG S C,WEI D Z. Operational intention inference of UAV cluster based on bridging distributions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2679-2688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0719.
    [19]LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
    [20]YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141
  • Cited by

    Periodical cited type(8)

    1. 李森,王亮,陈刚,吴静. 基于目标流驱动的作战体系动态同步分析方法. 系统工程理论与实践. 2022(01): 241-252 .
    2. 越凯强,李波,范盘龙. 基于三支决策的飞机空战机动决策方法. 计算机应用. 2022(02): 616-621 .
    3. 刘文金,裴扬,葛玉雪,艾俊强. 基于ABMS的对地攻击型无人机体系贡献率评估. 航空学报. 2022(09): 436-449 .
    4. 张雷,王全东,张杰. 陆战突击平台云协同火控系统内涵与关键技术. 装甲兵学报. 2022(06): 84-91 .
    5. 聂俊峰,陈行军,史红权. 面向任务驱动的海上编队云作战体系动态超网络模型. 兵工学报. 2021(11): 2513-2521 .
    6. 罗悦,王淼,肖刚,王国庆. 商用飞机远程驾驶模式的概念架构(英文). Transactions of Nanjing University of Aeronautics and Astronautics. 2020(02): 274-287 .
    7. 王述运,杨继坤,柴守权,岳付昌. 舰载机对海作战训练仿真系统设计与关键技术. 指挥控制与仿真. 2020(03): 81-86 .
    8. 李玉亭. 云计算环境下分布式大数据多信道并行控制系统. 计算机测量与控制. 2020(10): 116-119+134 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(1186) PDF downloads(796) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return