Zhao Xianghui, Hao Fei. Observer-based variable structure control for networked control systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 95-99. (in Chinese)
Citation: TIAN Yongliang, WANG Yongqing, XIONG Peisen, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945. doi: 10.13700/j.bh.1001-5965.2019.0051(in Chinese)

Structured simulation platform architecture for fighter cloud operations

doi: 10.13700/j.bh.1001-5965.2019.0051
More Information
  • Corresponding author: TIAN Yongliang, E-mail: tianyongliang1@buaa.edu.cn
  • Received Date: 16 Feb 2019
  • Accepted Date: 29 Mar 2019
  • Publish Date: 20 Oct 2019
  • With the rapid development and wide application of information technology such as big data, cloud computing, Internet of Things, and mobile Internet, new combat modes continue to emerge. The "cloud operation" with the core of the task distributed command & control process becomes a brand-new cross-domain full-dimensional combat style. Based on the analysis of the feature of combat cloud and cloud operation, combined with conventional combat simulation process, cloud operation system simulation process is proposed, and the cloud operations structured simulation platform architecture design and system function design are proposed. Through cloud operation structured simulation examples, it compares the observe-orient-decide-act (OODA) cycle of traditional combat styles with cloud operation styles. The results show that the cloud operation style can effectively shorten the OODA cycle time.

     

  • [1]
    FAHRENKRUG D.21st century warfare: The combat cloud[EB/OL].(2014-09-15)[2019-01-09].
    [2]
    胡悦.美国空军"作战云"发展现状与展望[J].现代导航, 2017(1):74-78.

    HU Y.Air Force "combat cloud" development and prospect[J].Modern Navigation, 2017(1):74-78(in Chinese).
    [3]
    SCHANZ M V.Combat networks that can survive high-threat environments[J].Air Force Magazine, 2014, 97(7):38-41.
    [4]
    SCHANZ M V.The combat cloud[J].Air Force Magazine, 2014(7):38-41.
    [5]
    DEPTULA D A.A new era for command and control of aerospace operations[J].Air & Space Power Journal, 2014(4):5-6.
    [6]
    罗金亮, 宿云波, 张恒新."作战云"体系构建初探[J].火控雷达技术, 2015, 44(3):26-30. doi: 10.3969/j.issn.1008-8652.2015.03.007

    LUO J L, SU Y B, ZHANG H X.Research on system construction of combat cloud[J].Fire Control Radar Technology, 2015, 44(3):26-30(in Chinese). doi: 10.3969/j.issn.1008-8652.2015.03.007
    [7]
    GOZTEPE K, CEHRELI I, SENSOY S E.A decision framework for combat cloud computing strategy[C]//6th International Information Security & Cryptology Conference, 2013, 9: 28-31.
    [8]
    李飞, 胡荣, 胡剑波, 等.空天云作战指挥控制效能评估[C]//第六届中国指挥控制大会.北京: 电子工业出版社, 2018: 904-909.

    LI F, HU R, HU J B, et al.Research on command and control effectiveness evaluation of aerospace cloud operations[C]//6th China Command and Control Conference Proceedings.Beijing: Publishling House of Electronics Industry, 2018: 904-909(in Chinese).
    [9]
    梁维泰, 毛晓彬, 黄松华.面向空中战斗云的协同任务规划框架研究[C]//第六届中国指挥控制大会.北京: 电子工业出版社, 2018: 37-41.

    LIANG W T, MAO X B, HUANG S H.Framework of cooperative mission planning for air combat cloud[C]//6th China Command and Control Conference Proceedings.Beijing: Publishling House of Electronics Industry, 2018: 37-41(in Chinese).
    [10]
    时东飞, 蔡疆, 黄松华, 等.美国空军"战斗云"作战理念及启示[J].指挥信息系统与技术, 2017, 8(3):27-32.

    SHI D F, CAI J, HUANG S H, et al.Operational concept and enlightenment of United States Air Force "combat cloud"[J].Command Information System and Technology, 2017, 8(3):27-32(in Chinese).
    [11]
    刘鹏, 戴锋, 闫坤.基于复杂网络的"云作战"体系模型及仿真[J].指挥控制与仿真, 2016, 38(6):6-11. doi: 10.3969/j.issn.1673-3819.2016.06.002

    LIU P, DAI F, YAN K.System model and simulation of "cloud operations" based on complex network[J].Command Control & Simulation, 2016, 38(6):6-11(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.06.002
    [12]
    WAN K, GAO X, LIU X, et al.A cloud cooperative attack system for networking anti-stealth combat[C]//2013 4th IEEE International Conference on Software Engineering and Service Science(ICSESS).Piscataway, NJ: IEEE Press, 2013: 515-520.
    [13]
    MA S D, ZHANG H Z, YANG G Q.Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J].Aerospace Science and Technology, 2017, 67(8):49-53.
    [14]
    HUANG Y Y.Modeling and simulation method of the emergency response systems based on OODA[J].Knowledge-Based Systems, 2015, 89:527-540. doi: 10.1016/j.knosys.2015.08.020
    [15]
    赵国宏.作战云体系结构研究[J].指挥与控制学报, 2015, 1(3):292-295.

    ZHAO G H.Architecture of combat clouds[J].Journal of Command and Control, 2015, 1(3):292-295(in Chinese).
  • Relative Articles

    [1]GUO F,HAN W,LIU Y J,et al. Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):795-805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0129.
    [2]LI K,SHEN Z G,ZHANG X J. Study on uncertainties of graphene tag antenna by screen printing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):857-864 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0159.
    [3]ZHOU Lin, ZHANG Wei, CHEN Xian, HUANG Jiang-tao, GAO Zheng-hong. Aerodynamic/Stealth design space analysis and optimization approach[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0586
    [4]LI Zhi-qiang, WANG Yang, XIN Li-biao. Structural Design and Aerodynamic Performance Analysis of Gradient Hexagonal Deformable Wing Ribs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0669
    [5]PANG F Q,ZHAO H F,KANG Y Y. Uncertainty estimation fused end-to-end video event detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3759-3770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0897.
    [6]LIU Ting, LIU Xiao, GUO Lei, CENG Lei, GUO Yijun. Research on Uncertainty Analysis Methods for Heat Transfer Ablation in Carbon-Based Materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0301
    [7]ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0480.
    [8]LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624.
    [9]YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849.
    [10]ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0451.
    [11]YAN X B,FANG Y W,PENG W S. Multi-objective Harris Hawk optimization algorithm based on adaptive Gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2636-2645 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0686.
    [12]ZHANG J,ZHANG Z R,HONG Z C,et al. Robust optimization of aviation logistics network in context of COVID-19 pandamic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2218-2226 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0664.
    [13]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
    [14]MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0764.
    [15]XU Q Y,MENG Y,LI S. Strain-based geometrically nonlinear beam modeling and analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2039-2049 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0627.
    [16]LIANG Jin-ze, PAN Tian-yu, ZHENG Meng-zong, PENG Lian-song, CAO Meng-da. Model design and aerodynamic characteristics analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0271
    [17]WANG Guang-han, SONG Chen, YANG Chao. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0647
    [18]CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541.
    [19]QIN Yuantian, SUN Hanqing, YUE Xin. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392
    [20]ZHANG Wei, WANG Qiang, LU Jiachen, YAN Chao. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142
  • Cited by

    Periodical cited type(3)

    1. 董欣心,刘莉,葛佳昊,王志. 捆绑火箭气动载荷分布不确定性分析. 北京航空航天大学学报. 2022(03): 464-472 . 本站查看
    2. 张威,王强,路嘉晨,阎超. 基于PCA-HicksHenne方法的几何不确定性稳健优化设计. 北京航空航天大学学报. 2022(12): 2473-2481 . 本站查看
    3. 王媛. 基于Pareto最优解的两轮农耕机机构优化设计. 自动化与仪器仪表. 2020(08): 128-131 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(1174) PDF downloads(796) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return