Volume 45 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
WANG Chenchen, FENG Shiyu, PENG Xiaotian, et al. Transient simulation on pressure relief process of engine nacelle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081(in Chinese)
Citation: WANG Chenchen, FENG Shiyu, PENG Xiaotian, et al. Transient simulation on pressure relief process of engine nacelle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081(in Chinese)

Transient simulation on pressure relief process of engine nacelle

doi: 10.13700/j.bh.1001-5965.2019.0081
Funds:

National Natural Science Foundation of China U1933121

the Fundamental Research Funds for the Central Universities kfjj20180108

the Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • Corresponding author: FENG Shiyu. E-mail:shiyuf@nuaa.edu.cn
  • Received Date: 04 Mar 2019
  • Accepted Date: 29 Mar 2019
  • Publish Date: 20 Nov 2019
  • The design of the engine nacelle pressure relief door will affect the safety of the nacelle. The pressure relief is a dynamic process, which is related to the pressure inside and outside the nacelle, the freestream Mach number and the structure of the pressure relief door. Based on the Modelica language, a zero-dimensional transient simulation mathematical model of the nacelle pressure relief process was established, and the pressure relief door (PRD) discharge and moment coefficient under different opening angles were calculated via computational fluid dynamics (CFD). Then those coefficients were substituted into the zero-dimensional transient simulation model, and the variation relationship of key parameters such as the plenum compartment pressure and opening angle of the PRD with time during the pressure relief process is obtained. The influence of the plenum compartment pressure threshold and the maximum opening angle of the PRD on the pressure relief process was analyzed. The study results show that reducing the plenum compartment pressure threshold for PRD opening will reduce the time required for the pressure relief process reaching to the equilibrium stage, but has no effect on the plenum compartment pressure and reciprocating swing angle/amplitude at equilibrium stage; properly reducing the maximum opening angle can effectively reduce the PRD reciprocating swing angle/amplitude in the equilibrium stage, and has no effect on the pressure relief rate in the initial stage and the plenum compartment pressure in the equilibrium stage, but excessive reduction of the maximum opening angle will decrease the pressure relief rate in the initial stage and increase plenum compartment pressure in the equilibrium stage.

     

  • loading
  • [1]
    中国民用航空局.中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R3[S].北京: 中国民用航空局, 2001.

    Civil Aviation Administration of China.Chinese civil aviation regulations Part 25 airworthiness standards for transport category aircraft: CCAR-25-R3[S]. Beijing: Civil Aviation Administration of China, 2001(in Chinese).
    [2]
    VICK A R. An investigation of discharge and thrust characteristics of flapped outlets for stream Mach numbers from 0.40 to 1.30: NACA TN4007[R]. Washington, D.C.: NACA, 1957.
    [3]
    PRATT P R, WATTERSON J K, BENARD E.Computational and experimental studies of pressure relief doors in ventilated nacelle compartments[J]. Investigative Ophthalmology & Visual Science, 2003, 28(10):1678-1686.
    [4]
    PRATT P R, WATTERSON J K, BENARD E, et al.Performance of a flapped duct exhausting into a compressible external flow[C]//CD-ROM Proceedings of 24th International Congress of the Aeronautical Sciences.Yokohama: Optimage Ltd., 2004, 1: 1-9.
    [5]
    BENARD E, WATTERSON J K, GAULT R, et al.Review and experimental survey of flapped exhaust performance[J]. Journal of Aircraft, 2008, 45(1):349-352. doi: 10.2514/1.34238
    [6]
    VEDESHKIN G, DUBOVITSKIY A, BONDARENKO D, et al.Experimental investigations of hydraulic devices performance in aviation engine compartment[C]//28th Congress of the International Council of the Aeronautical Sciences 2012.Brisbane: Curran Associates, Inc., 2013, 2: 1692-1700.
    [7]
    SCHOTT T. Computational analysis of aircraft pressure relief doors[D]. Colorado: Colorado State University, 2016.
    [8]
    郁成德.增压舱突然泄压载荷计算[J].民用飞机设计与研究, 1997(2):43-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930

    YU C D.Calculation of pressurized cabin pressure relief load[J]. Civil Aircraft Design & Research, 1997(2):43-49(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930
    [9]
    刘华源, 屠毅.民用飞机泄压载荷影响因素研究[J].科技视界, 2016(16):30-31. doi: 10.3969/j.issn.2095-2457.2016.16.016

    LIU H Y, TU Y.Numerical simulation of decompression in pressurized cabin of civil aircraft[J]. Science & Technology Vision, 2016(16):30-31(in Chinese). doi: 10.3969/j.issn.2095-2457.2016.16.016
    [10]
    赵建军, 丁建完, 周凡利, 等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(2):570-573. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162

    ZHAO J J, DING J W, ZHOU F L, et al.Modelica and its mechanism of multi-domain unified modeling and simulation[J]. Journal of System Simulation, 2006, 18(2):570-573(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162
    [11]
    TILLER M. Introduction to physical modeling with Modelica[M]. Boston: Kluwer Academic, 2001.
    [12]
    LOVERA M, PULECCHI T.Object-oriented modelling for spacecraft dynamics: A case study[C]//Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design.Piscataway, NJ: IEEE Press, 2006: 1898-1903.
    [13]
    CASELLA F, LOVERA M.High-accuracy orbital dynamics simulation through keplerian and equinoctial parameters[C]//Proceedings of the 6th International Modelica Conference.Bielefeld: The Modelica Association, 2008, 2: 505-514.
    [14]
    张宝坤, 赵建军, 刘伟.关于飞机液压负载功率系统优化设计研究[J].计算机仿真, 2017, 34(5):82-87. doi: 10.3969/j.issn.1006-9348.2017.05.018

    ZHANG B K, ZHAO J J, LIU W.Research on aircraft hydraulic load power system optimization design[J]. Computer Simulation, 2017, 34(5):82-87(in Chinese). doi: 10.3969/j.issn.1006-9348.2017.05.018
    [15]
    李志为, 赵洪山.基于Modelica语言的电力系统建模与仿真[J].华东电力, 2012(3):425-428.

    LI Z W, ZHAO H S.Modeling and simulation of power system based on Modelica[J]. East China Electric Power, 2012(3):425-428(in Chinese).
    [16]
    程雷, 秦东晨, 王耀凯, 等.基于Modelica的纯电动客车建模仿真研究[J].汽车技术, 2017(8):43-48. doi: 10.3969/j.issn.1000-3703.2017.08.008

    CHENG L, QING D C, WANG Y K, et al.Modeling and simulation of pure electric bus based on Modelica[J]. Automobile Technology, 2017(8):43-48(in Chinese). doi: 10.3969/j.issn.1000-3703.2017.08.008
    [17]
    RUBIO M, URQUIA A, GONZÁLEZ L, et al.FuelCellLib-a modelica library for modeling of fuel cells[C]//Proceedings of the 4th International Modelica Conference.Hamburg: The Modelica Association, 2005, 1: 75-83.
    [18]
    孟亦飞, 蒋军成.化工装置泄漏扩散定量风险分析[J].石油化工高等学校学报, 2008, 21(4):50-54. doi: 10.3969/j.issn.1006-396X.2008.04.013

    MENG Y F, JIANG J C.Calculation of high-pressure gas tank leakage parameters[J]. Industrial Safety and Environmental Protection, 2008, 21(4):50-54(in Chinese). doi: 10.3969/j.issn.1006-396X.2008.04.013
    [19]
    范钦珊.理论力学[M].北京:高等教育出版社, 2000:264-265.

    FAN Q S.Theoretical mechanics[M]. Beijing:Higher Education Press, 2000:264-265(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(705) PDF downloads(458) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return