Volume 45 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
DING Hongbing, LI Yiming, LI Jinxia, et al. Adaptability of high-frequency response characteristic model for micro probe-transducer system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104(in Chinese)
Citation: DING Hongbing, LI Yiming, LI Jinxia, et al. Adaptability of high-frequency response characteristic model for micro probe-transducer system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104(in Chinese)

Adaptability of high-frequency response characteristic model for micro probe-transducer system

doi: 10.13700/j.bh.1001-5965.2019.0104
Funds:

National Natural Science Foundation of China 51876143

National Natural Science Foundation of China 61873184

National Natural Science Foundation of China 61627803

Natural Science Foundation of Tianjin 16JCQNJC03700

  • Received Date: 13 Mar 2019
  • Accepted Date: 18 May 2019
  • Publish Date: 20 Aug 2019
  • To broaden the available bandwidth of micro probe transducer system and improve the measurement accuracy of high-frequency pressure signal, it is important to study the frequency response characteristic and analyze the application scope and prediction accuracy of the mathematic models for different probe-transducer system structures. In this study, the probe-transducer system structure was divided into five typical types. Then, the frequency response prediction models, and assumed conditions and updating methods of the existing probe-transducer system were summarized. To evaluate the theoretical mathematic models' prediction accuracy quantitatively, the resonant frequency, cut-off frequency and working band (amplitude error ±5%) for probe-transducer system with different structures were extracted by mathematic models and compared with the CFD and experimental results. For the resonator whose probe is shorter, the Panton model can be used and the error can be controlled within 1%. For the structure whose probe is longer and the structure with pressure hole, the B-T model is the most accurate. Finally, the probe-transducer system was optimized to study the self-excited oscillation phenomenon in supersonic condensation. The results show that the frequency response characteristic of the optimized probe-transducer system can meet the requirement of dynamic measurement for the high-frequency (about 10 kHz) fluctuating pressure signal.

     

  • loading
  • [1]
    王庆伟, 刘波, 侯为民, 等.压气机转子叶片表面动态压力测量的探索[J].航空动力学报, 2010, 25(10):2327-2332. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201010027

    WANG Q W, LIU B, HOU W M, et al.Tentative research about pressure measurement on one point of compressor rotor blade surface[J].Journal of Aerospace Power, 2010, 25(10):2327-2332(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201010027
    [2]
    WANG X, WANG X N, REN X, et al.Effects of tube system and data correction for fluctuating pressure test in wind tunnel[J].Chinese Journal of Aeronautics, 2018, 31(4):710-718. doi: 10.1016/j.cja.2018.01.021
    [3]
    KUTIN J, SVETE A.On the theory of the frequency response of gas and liquid pressure measurement systems with connecting tubes[J].Measurement Science and Technology, 2018, 29:125108. doi: 10.1088/1361-6501/aae884
    [4]
    马宏伟, 魏巍, 张良, 等.欠频响压力探针测量压气机动态流场的结果分析[J].航空发动机, 2016, 42(2):67-72. http://d.old.wanfangdata.com.cn/Periodical/hkfdj201602013

    MA H W, WEI W, ZHANG L, et al.Analysis of measured unsteady flow field using a quasi fast response pressure probe[J].Aircraft Engine, 2016, 42(2):67-72(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkfdj201602013
    [5]
    李炜, 邓勇生, 赵中兵.固体火箭发动机用高频响压力传感器设计[J].固体火箭技术, 2018, 41(4):532-536. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201804023

    LI W, DENG Y S, ZHAO Z B.Design of high frequency pressure sensor for solid rocket motor[J].Solid Rocket Technology, 2018, 41(4):532-536(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gthjjs201804023
    [6]
    FAN L T, TO T C, HIRAOKA S, et al.Pressure fluctuations in a fluidized bed[J].Aiche Journal, 1981, 27(3):388-396. doi: 10.1002/aic.690270308
    [7]
    YATES J G, SIMONS S J R.Experimental methods in fluidization research[J].International Journal of Multiphase Flow, 1994, 20(8):297-330. http://cn.bing.com/academic/profile?id=d2bc6c36ddde79a0bfe053b7184f8e21&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    ANTONINI C, PERSICO G, ROWE A L.Prediction of the dynamic response of complex transmission line systems for unsteady pressure measurements[J].Measurement Science and Technology, 2008, 19(12):125401. doi: 10.1088/0957-0233/19/12/125401
    [9]
    柳兆荣, 陈金娥, 黄东群.压力传感器频率响应的分析[J].力学学报, 1980, 16(4):40-49. http://cdmd.cnki.com.cn/Article/CDMD-10110-2007139205.htm

    LIU Z R, CHEN J E, HUANG D Q.An analysis of frequency responses of pressure transducer[J].Journal of Mechanics, 1980, 16(4):40-49(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10110-2007139205.htm
    [10]
    叶挺, 梁庭, 张文栋.压力测试中引压管的动态特性研究[J].中北大学学报(自然科学版), 2011, 32(2):222-226. doi: 10.3969/j.issn.1673-3193.2011.02.021

    YE T, LIANG T, ZHANG W D.Dynamic characteristic of transmission tube in pressure measurement system[J].Journal of North University of China(Natural Science Edition), 2011, 32(2):222-226(in Chinese). doi: 10.3969/j.issn.1673-3193.2011.02.021
    [11]
    黄俊钦.压力传感器动态数学模型研究[J].计量学报, 1987, 8(3):35-41. http://d.old.wanfangdata.com.cn/Conference/192935

    HUANG J Q.Research for dynamic mathematical model of pressure transducer[J].Acta Metrologica Sinica, 1987, 8(3):35-41(in Chinese). http://d.old.wanfangdata.com.cn/Conference/192935
    [12]
    GOODSON R E, LEONARD R G.A survey of modeling techniques for fluid line transients[J].Journal of Basic Engineering, 1972, 94(2):474-482. doi: 10.1115/1.3425453
    [13]
    IBERALL A S.Attenuation ofoscillatory pressures in instrument lines 1[J].Journal of Research of the National Bureau of Standards, 1950, 45(1):276-277.
    [14]
    BERGH H, TIJDEMAN H.Theoretical and experimental results of dynamic response of pressure measuring system: NLR-TR F.238[R].Amsterdam: NLR, 1965: 1-19.
    [15]
    RICHARDS W B.Propagation of sound waves in tubes of noncircular cross section NASA: NASA-TP-2601[R].Washington, D.C.: NASA, 1986.
    [16]
    胡寿松.自动控制原理[M].4版.北京:科学出版社, 2001:187-228.

    HU S S.Automatic control theory[M].4th ed.Beijing:Science Press, 2001:187-228(in Chinese).
    [17]
    朱明武.动压测量[M].北京:国防工业出版社, 1983:243-282.

    ZHU M W.Dynamic pressure measurement[M].Beijing:National Defense Industry Press, 1983:243-282(in Chinese).
    [18]
    SEMAAN R, SCHOLZ P.Pressure correction schemes and the use of the Wiener deconvolution method in pneumatic systems with short tubes[J].Experiments in Fluids, 2012, 53(3):829-837. doi: 10.1007/s00348-012-1332-2
    [19]
    ANDERSON R C, ENGLAND D V.Liquid-filled transient pressure measuring system: A method for determining frequency response: NASA TN D-6603[R].Washington, D.C.: NASA, 1971.
    [20]
    CHEN T S, LJUNG L.Implementation of algorithms for tuning parameters in regularized least squares problems in system identification[J].Automatica, 2013, 49(7):2213-2220. doi: 10.1016/j.automatica.2013.03.030
    [21]
    ISERMANN R.Practical aspects of process identification[J].Automatica, 1980, 16(5):575-587. doi: 10.1016/0005-1098(80)90079-5
    [22]
    VAN OMMEN J R, SCHOUTEN J C, VANDER STAPPEN M L M, et al.Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds:How to prevent pitfalls in dynamic pressure measurements[J].Powder Technology, 1999, 113(1):199-218. doi: 10.1016-S0032-5910(99)00078-9/
    [23]
    KOBAYASHI H, LEGER T, WOLFF J M.Experimental and theoretical frequency response of pressure transducers for high speed turbomachinery[J].International Journal of Turbo & Jet-Engines, 2000, 17(2):153-160. http://cn.bing.com/academic/profile?id=dbfc8145ca88d31b9489d095a8f9a8c2&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    PANTON R L, MILLER J M.Resonant frequencies of cylindrical Helmholtz resonators[J].The Journal of the Acoustica Society of America, 1975, 57(6):1533-1535. doi: 10.1121/1.380596
    [25]
    王超, 林大烜, 丁红兵, 等.基于凝结实验平台的音速喷嘴凝结现象研究[J].北京航空航天大学学报, 2017, 43(11):2232-2239. https://bhxb.buaa.edu.cn/CN/abstract/abstract14352.shtml

    WANG C, LIN D X, DING H B, et al.Study on condensation in sonic nozzle based on experimental condensation apparatus[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11):2232-2239(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14352.shtml
    [26]
    WEGENER P P, CAGLIOSTRO D J.Periodic nozzle flow with heat addition[J].Combustion Science and Technology, 1973, 6(5):269-277. doi: 10.1080/00102207308952329
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views(594) PDF downloads(488) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return