-
摘要:
音速喷嘴中流动的蒸汽或含湿气体由于自身的温降而发生凝结现象,对音速喷嘴的计量会产生一定的影响。针对音速喷嘴凝结现象和自激振荡的复杂变化情况,利用一套凝结实验平台研究了音速喷嘴内湿空气凝结现象,得到了不同条件的喷嘴沿程压力,并建立了凝结流动Eulerian两相模型,对凝结现象的影响因素进行了数值分析,使实验结果得到了验证和补充。结果表明,载气的压力、温度、湿度会对凝结产生比较大的影响。凝结发生位置伴随载气温度、湿度的提高而前移,强度有所增大。随着载气压力的增大,凝结发生位置前移,但是强度相对减弱。自激振荡的频率与载气湿度、温度呈正相关,与载气压力呈负相关,振幅与载气的压力、温度、湿度均呈正相关。
Abstract:The temperature of water vapor and moist gas will drop greatly in the sonic nozzle, which leads to the condensation and will have a great effect on the measurements. Aimed at the phenomenon of condensation and self-oscillation of sonic nozzle, an experimental condensation apparatus was set up to observe the condensation of moist air in sonic nozzle, and the pressure distribution under different conditions was obtained. To validate and supplement the experimental data, a gas-liquid two-phase flow Eulerian model was established through numerical analysis of influence factors on condensation. The results show that the inlet pressure, humidity and temperature have a great influence on condensation phenomenon. With the increase of humidity and temperature, the location of condensation moves forward and the intensity also increases. With the increase of the inlet pressure, the location of condensation moves forward, while the intensity weakens. The frequency of self-oscillation is positively related to the humidity and temperature, and negatively related to the inlet pressure. The amplitude is positively related to the inlet pressure, humidity and temperature.
-
Key words:
- sonic nozzle /
- supersonic flow /
- condensation /
- numerical model /
- self-oscillation
-
表 1 网格独立性测试结果
Table 1. Grid independence test results
参数 网格
(N1×N2)质量流量/(kg·s-1) 相对变化量/% N1变化
N2=120850×120 0.053 020 379 900×120 0.053 027 642 0.013 7 950×120 0.053 028 746 0.002 1 N1 = 900
N2变化900×100 0.053 035 973 900×120 0.053 027 642 0.015 7 900×140 0.053 026 096 0.002 9 -
[1] 汪欢欢. 基于音速喷嘴的气体流量标准装置的研制[D]. 广州: 华南理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10561-1013319445.htmWANG H H.The development of gas flow standard device based on sonic nozzle[D].Guangzhou:South China University of Technology, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-1013319445.htm [2] 代钦, 魏润杰, 黄湛, 等.超音速喷流DPIV瞬时速度场实验测量[J].北京航空航天大学学报, 2001, 27(6):666-669. http://bhxb.buaa.edu.cn/CN/abstract/abstract10903.shtmlDAI Q, WEI R J, HUANG Z, et al.Experimental study of supersonic jet flow using DPIV[J].Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(6):666-669(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract10903.shtml [3] ASCHENBRENNER A.The influence of humidity on the flow-rate of air through critical flow nozzles[C]//Proceedings of the International Conference on Flow Measurement, 1983:71-74. [4] 李春辉, 王池.通过音速喷嘴气体流量的湿度修正方法研究[J].计量学报, 2007, 28(3A):160-164. http://d.wanfangdata.com.cn/Periodical/jlxb982007z1041LI C H, WANG C.The humidity correction on the flow through sonic nozzle[J].Acta Metrologica Sinica, 2007, 28(3A):160-164(in Chinese). http://d.wanfangdata.com.cn/Periodical/jlxb982007z1041 [5] BRITTON C L, CAZON R W, KEGEL K.The critical flow function, C, for humid air[C]//ASME Fluids Engineering Division Summer Meeting.New York:ASME, 1998:No.5309. [6] STEWART D G, WATSON J T R, VAIDYA A M.The effect of using atmospheric air in critical flow nozzles[C]//4th International Symposium on Fluid Flow Measurement, 1999:27-30. [7] LIM J M, YOON B H, OH Y K, et al.The humidity effect on air flow rates in a critical flow venture nozzle[J].Flow Measurement and Instrumentation, 2011, 22(5):402-405. doi: 10.1016/j.flowmeasinst.2011.06.004 [8] CHAHINE K, BALLICO M.Evaluation of the effect of relative humidity of air on the coefficients of critical flow venturi nozzles[C]//16th International Flow Measurement Conference, 2013:24-26. [9] LI C H, MICKAN B.The humidity effect on the calibration of discharge coefficient of sonic nozzle by means of pVTt facility[C]//Proceedings of 8th International Symposium on Fluid Flow Measurement, 2012:No.302. [10] YOUNG J B.The spontaneous condensation of steam in supersonic nozzles[J].Physico Chemical Hydrodynamics, 1982, 3(1):57-82. https://www.researchgate.net/publication/279564905_The_spontaneous_condensation_of_steam_in_supersonic_nozzles [11] KANE D, FISENKO S P, RUSYNIAK M.The effect of carrier gas pressure on vapor phase nucleation experiments using a thermal diffusion cloud chamber[J].Journal of Chemical Physics, 1999, 111(18):8496-8502. doi: 10.1063/1.480190 [12] WEGENER P P, POURING A A.Experiments on condensation of water vapor by homogeneous nucleation in nozzles[J].The Physics of Fluids, 1964, 7(3):352-361. doi: 10.1063/1.1711206 [13] 蔡颐年, 王乃宁.湿蒸汽两相流[M].西安:西安交通大学出版社, 1985.CAI Y N, WANG N N.Wet steam two-phase flow[M]. Xi'an:Xi'an Jiaotong University Press, 1985(in Chinese). [14] 马庆芬. 旋转超音速凝结流动及应用技术研究[D]. 大连: 大连理工大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10141-2009116110.htmMA Q F.Study on the rotating supersonic condensing flow and application technology[D].Dalian:Dalian University of Technology, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-2009116110.htm [15] AVETISSIAN A R, PHILIPPOV G A, ZAICHIK L I.Effects of turbulence and inlet moisture on two-phase spontaneously condensing flows in transonic nozzles[J].International Journal of Heat and Mass Transfer, 2008, 51(17):4195-4203. https://www.sciencedirect.com/science/article/pii/S0017931008000628 [16] DYKAS S, WROBLEWSKI W.Numerical modelling of steam condensing flow in low and high-pressure nozzles[J].International Journal of Heat and Mass Transfer, 2012, 55(21):6191-6199. http://www.sciencedirect.com/science/article/pii/S0017931012004693 [17] WANG C, WANG L, ZHAO H X, et al.Effects of superheated steam on non-equilibrium condensation in ejector primary nozzle[J]. International Journal of Refrigeration, 2016, 67:214-226. doi: 10.1016/j.ijrefrig.2016.02.022 [18] WEGENER P P, CAGLIOSTRO D J.Periodic nozzle flow with heat addition[J].Combustion Science and Technology, 1973, 6(5):269-277. doi: 10.1080/00102207308952329 [19] SKILLING S A.An analysis of the condensation phenomena occurring in wet steam turbine[D].Birmingham:University of Birmingham, 1987. http://www.mysciencework.com/publication/show/analysis-condensation-phenomena-occurring-wet-steam-turbines-bbbf1d90 [20] ADAM S, SCHNERR G.Instabilities and bifurcation of non-equilibrium two-phase flows[J].Journal of Fluid Mechanics, 1997, 348(1):1-28. [21] 吴晓明, 李国君, 李亮, 等.湿蒸汽凝结流中自激振荡模式的数值模拟[J].动力工程, 2009, 29(8):747-751. http://d.wanfangdata.com.cn/Periodical/dlgc200908009WU X M, LI G J, LI L, et al.Numerical simulation of self-excited oscillation patterns in wet steam flow with condensation[J].Journal of Power Engineering, 2009, 29(8):747-751(in Chinese). http://d.wanfangdata.com.cn/Periodical/dlgc200908009 [22] International Standard Organization. Measurement of gas flow by means of critical flow venturi nozzles:ISO9300-2005[S].Geneva:International Standard Organization, 2005. [23] WANG C, DING H B, ZHAO Y K, et al.Sensor system for unsteady flow characteristics in a sonic nozzle with vapor condensation[C]//2014 IEEE International Instrumentation and Measurement Technology Conference.Piscataway, NJ:IEEE Press, 2014, 5:772-775. http://ieeexplore.ieee.org/document/6860847/ [24] DING H B, WANG C, CHEN C.Experimental and numerical studies on self-excited periodic oscillation of vapor condensation in a sonic nozzle[J].Experimental Thermal and Fluid Science, 2015, 68:288-299. doi: 10.1016/j.expthermflusci.2015.05.002 [25] 丁红兵. 音速喷嘴边界层发展及凝结现象研究[D]. 天津: 天津大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htmDING H B. Boundary layer development and vapor condensation in sonic nozzle[D].Tianjin:Tianjin University, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm [26] 金如山.喷嘴雾化研究[J].北京航空航天大学学报, 1989(3):69-78. http://d.wanfangdata.com.cn/Periodical/jxgcxb201702025JIN R S.Atomization study[J].Journal of Beijing University of Aeronautics and Astronautics, 1989(3):69-78(in Chinese). http://d.wanfangdata.com.cn/Periodical/jxgcxb201702025 [27] WANG C, DING H B, LIU Q, et al.The dynamic compensation of temperature sensors in sonic nozzle airflow standard facilities based on method of positive pressure[C]//2012 IEEE International Instrumentation and Measurement Technology Conference. Piscataway, NJ:IEEE Press, 2012:2005-2009. The dynamic compensation of temperature sensors in sonic nozzle airflow standard facilities based on method of positive pressure [28] 孙铁志, 魏英杰, 王聪, 等.通气位置对潜射航行流体动力特性影响分析[J].北京航空航天大学学报, 2013, 39(10):1303-1308. http://bhxb.buaa.edu.cn/CN/abstract/abstract12743.shtmlSUN T Z, WEI Y J, WANG C, et al.Analysis of the effect of ventilation positions on hydrodynamic characteristics of submarine-launched vehicle[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1303-1308(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12743.shtml [29] 王超, 王刚, 丁红兵.音速喷嘴内水蒸汽自发凝结流动自激振荡和分歧现象研究[J].天津大学学报(自然科学与工程技术版), 2016, 49(11):1113-1120. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjdx201611001&dbname=CJFD&dbcode=CJFQWANG C, WANG G, DING H B.Research of spontaneous condensation steam flow with self-excited oscillation and bifurcation phenomenon in sonic nozzles[J].Journal of Tianjin University(Science and Technology), 2016, 49(11):1113-1120(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjdx201611001&dbname=CJFD&dbcode=CJFQ