Citation: | LI Yansu, ZHANG Kun, HE Chengjun, et al. Effect of low-speed modification of compressible solver on turbulence simulation accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2199-2206. doi: 10.13700/j.bh.1001-5965.2019.0129(in Chinese) |
The calculation accuracy of low-speed region in high speed turbulence can be improved by modifying the compressible solver. However, it is difficult to evaluate the contribution of such modification, because simulation accuracy results from complex factors including solver type, accuracy of schemes, grid number, etc. This paper focuses on the influence of the compressible solver with and without low-speed modification on complex turbulence simulation when using different order or resolution of the schemes and different amount of grid. With the calculation example of Taylor-Green vortex, the differences of the results are evaluated quantitatively. The results show that the influence of the low-speed modification is different with different scheme-grid combinations. The low-speed modification method can effectively improve the calculation accuracy with coarse grids and low-accuracy reconstruction schemes.
[1] |
傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010.
FU D X, MA Y W, LI X L, et al.Direct numerical simulations for compressible turbulence[M].Beijing:Science Press, 2010(in Chinese).
|
[2] |
屈峰.高分辨率格式的研究及其应用[D].北京: 北京航空航天大学, 2015.
QU F.Research and application of high resolution schemes[D].Beijing: Beihang University, 2015(in Chinese).
|
[3] |
WEISS J M, SMITH W A.Preconditioning applied to variable and constant density flows[J].AIAA Journal, 1995, 33(11):2050-2057. doi: 10.2514/3.12946
|
[4] |
LIOU M S.A sequel to AUSM.Part Ⅱ:AUSM+-up for all speeds[J].Journal of Computational Physics, 2006, 214(1):137-170. doi: 10.1016-j.jcp.2005.09.020/
|
[5] |
KITAMURA K, SHIMA E.Towards shock-stable and accurate hypersonic heating computations:A new pressure flux for AUSM-family schemes[J].Journal of Computational Physics, 2013, 245:62-83. doi: 10.1016/j.jcp.2013.02.046
|
[6] |
RIEPER F.A low-Mach number fix for Roe's approximate Riemann solver[J].Journal of Computational Physics, 2011, 230(13):5263-5287. doi: 10.1016/j.jcp.2011.03.025
|
[7] |
FILLION P, CHANOINE A, DELLACHERIE S, et al.FLICA-OVAP:A new platform for core thermal-hydraulic studies[J].Nuclear Engineering and Design, 2011, 241(11):4348-4358. doi: 10.1016/j.nucengdes.2011.04.048
|
[8] |
LI X, GU C.An all-speed roe-type scheme and its asymptotic analysis of low Mach number behaviour[J].Journal of Computational Physics, 2008, 227(10):5144-5159. doi: 10.1016/j.jcp.2008.01.037
|
[9] |
阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006.
YAN C.Method and application of computational fluid dynamics[M].Beijing:Beihang University Press, 2006(in Chinese).
|
[10] |
GOTTLIEB S, SHU C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society, 1998, 67(221):73-85. doi: 10.1090/S0025-5718-98-00913-2
|
[11] |
ROE P L.Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics, 1997, 135(2):250-258. doi: 10.1006/jcph.1997.5705
|
[12] |
JIANG G, SHU C.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
|
[13] |
PIROZZOLI S.On the spectral properties of shock-capturing schemes[J].Journal of Computational Physics, 2006, 219(2):489-497. doi: 10.1016/j.jcp.2006.07.009
|
[14] |
FAUCONNIER D, DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics, 2011, 230(12):4488-4518. doi: 10.1016/j.jcp.2011.02.025
|
[15] |
BRACHET M E, MEIRON D I, ORSZAG S A, et al.Small-scale structure of the Taylor-Green vortex[J].Journal of Fluid Mechanics, 1983, 130:411-452. doi: 10.1017/S0022112083001159
|
[16] |
DEBONIS J.Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods: AIAA-2013-0382[R].Reston: AIAA, 2013.
|