Ma Wenzhen, Zheng Jianhua, Gao Changshenget al. Trajectories to the far side of the sun via gravity assists[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(08): 917-921. (in Chinese)
Citation: FAN Wenru, WANG Bo, LI Jingyao, et al. Damage detection of CFRP structure based on electrical impedance tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2177-2183. doi: 10.13700/j.bh.1001-5965.2019.0149(in Chinese)

Damage detection of CFRP structure based on electrical impedance tomography

doi: 10.13700/j.bh.1001-5965.2019.0149
Funds:

National Natural Science Foundation of China 61301244

the Fundamental Research Funds for the Central Universities 3122016A010

More Information
  • Corresponding author: FAN Wenru.E-mail:wenrufan@hotmail.com
  • Received Date: 03 Apr 2019
  • Accepted Date: 01 Jun 2019
  • Publish Date: 20 Nov 2019
  • Electrical impedance tomography (EIT) is an emerging method for evaluating the structural state of carbon fiber reinforced polymer (CFRP). In this paper, the structural damage detection ability of EIT is studied by applying EIT technology to commercial anisotropic CFRP laminated plates. Some damage models of CFRP are established by COMSOL software, and the spatial potential distribution information of three-dimensional field is obtained by finite element analysis. In order to improve the image reconstruction effect of EIT technology on the damage of anisotropic CFRP structure, the embedded electrodes are used to collect the internal electrical signals of the material effectively, and a modified image reconstruction algorithm based on L1 sparse regularization is proposed. In addition, a set of embedded 16-electrode EIT hardware system based on digital multimeter is established. The damage of simple CFRP is detected by EIT system detection platform. The results show that the image reconstruction effect of damaged materials is good, which proves the feasibility of EIT method in damage detection of CFRP structures.

     

  • [1]
    邹达懿, 王鹏飞.复合材料平尾有限元建模方法研究[J].国外电子测量技术, 2012, 31(7):24-27. doi: 10.3969/j.issn.1002-8978.2012.07.007

    ZOU D Y, WANG P F.Research on finite element modeling method for composite flat tail[J].Foreign Electronic Measurement Technology, 2012, 31(7):24-27(in Chinese). doi: 10.3969/j.issn.1002-8978.2012.07.007
    [2]
    杨乃宾.新一代大型客机复合材料结构[J].航空学报, 2008, 29(3):596-603. doi: 10.3321/j.issn:1000-6893.2008.03.010

    YANG N B.Composite material structures for new generation large airliners[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):596-603(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.010
    [3]
    程军.碳纤维复合材料的电磁涡流无损检测技术的研究[D].南京: 南京航空航天大学, 2015.

    CHENG J.Research on electromagnetic eddy current nondestructive testing technology for carbon fiber composites[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [4]
    张澎涛.碳纤维复合材料分层损伤的超声波无损检测研究[D].哈尔滨: 东北林业大学, 2006.

    ZHANG P T.Study on ultrasonic nondestructive testing of delamination damage of carbon fiber composites[D].Harbin: Northeast Forestry University, 2006(in Chinese).
    [5]
    戴景民, 汪子君.红外热成像无损检测技术及其应用现状[J].自动化技术与应用, 2009, 26(1):1-6. doi: 10.3969/j.issn.1003-7241.2009.01.001

    DAI J M, WANG Z J.Infrared thermal imaging nondestructive testing technology and its application status[J].Automation Technology and Application, 2009, 26(1):1-6(in Chinese). doi: 10.3969/j.issn.1003-7241.2009.01.001
    [6]
    孙磊.碳纤维增强树脂基复合材料涡流无损检测有限元分析[D].厦门: 厦门大学, 2014.

    SUN L.Finite element analysis of eddy current nondestructive testing for carbon fiber reinforced resin matrix composites[D].Xiamen: Xiamen University, 2014(in Chinese).
    [7]
    任吉林, 曾亮, 张丽攀, 等.碳纤维复合材料涂层厚度涡流测量的研究[J].仪器仪表学报, 2011, 32(12):2662-2668.

    REN J L, ZENG L, ZHANG L P, et al.Study on eddy current measurement of coating thickness of carbon fiber composites[J].Chinese Journal of Scientific Instrument, 2011, 32(12):2662-2668(in Chinese).
    [8]
    范文茹, 雷建, 董玉珊, 等.基于四电极法的CFRP结构损伤检测研究[J].仪器仪表学报, 2017, 38(4):961-968. doi: 10.3969/j.issn.0254-3087.2017.04.022

    FAN W R, LEI J, DONG Y S, et al.Research on damage detection of CFRP structure based on four-electrode method[J].Chinese Journal of Scientific Instrument, 2017, 38(4):961-968 (in Chinese). doi: 10.3969/j.issn.0254-3087.2017.04.022
    [9]
    LOYOLA B R, SAPONARA V L, LOH K J, et al.Spatial sensing using electrical impedance tomography[J].IEEE Sensors Journal, 2013, 13(6):2357-2368. doi: 10.1109/JSEN.2013.2253456
    [10]
    BALTOPOULOS A, POLYDORIDES N, PAMBAGUIAN L, et al.Damage identification in carbon fiber reinforced polymer plates using electrical resistance tomography mapping[J].Journal of Composite Materials, 2013, 47(26):3285-3301. doi: 10.1177/0021998312464079
    [11]
    FAN W R, WANG H X, XUE Q, et al.Modified sparse regularization for electrical impedance tomography[J].Review of Scientific Instrument, 2016, 87:034702. doi: 10.1063/1.4943207
    [12]
    CAGAN J. Hardware implementation of electrical resistance tomography for damage detection of carbon fibre-reinforced polymer composites[J].Structural Health Monitoring, 2017, 16(2):129-141. doi: 10.1177/1475921716666004
    [13]
    GESELOWITZ D B.An application of electrocardiographic lead theory to impedance plethysmography[J].IEEE Transactions on Biomedical Engineering, 1971, 18(1):38-41.
    [14]
    WRIGHT S J, NOWAK R D, FIGUEIREDO M A T.Sparse reconstruction by separable approximation[J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. doi: 10.1109/TSP.2009.2016892
    [15]
    ZHOU B, GAO L, DAI Y H.Gradient methods with adaptive stepsizes[J].Computational Optimization and Applications, 2006, 35(1):69-86. doi: 10.1007/s10589-006-6446-0
    [16]
    FLETCHER R.On the Barzilai-Borwein method[M].Berlin:Springer, 2005:235-256.
    [17]
    CALVETTI D, REICHEL L, SHUIBI A.Invertible smoothing preconditioners for linear discrete ill-posed problems[J].Applied Numerical Mathematics, 2005, 54(2):135-149. doi: 10.1016/j.apnum.2004.09.027
    [18]
    TODOROKI A, SUZUKI K, MIZUTANI Y, et al.Durability estimates of copper plated electrodes for self-sensing CFRP composites[J].Journal of Solid Mechanics & Materials Engineering, 2010, 4(6):610-620.
  • Relative Articles

    [1]CHEN Y,WANG Z,ZHOU F C. Railway foreign objects tracking detection based on spatial location and feature generalization enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):9-18 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0974.
    [2]BU Fanqiang, LIU Yong, WANG Xingguo, LI Xiaogao, SHEN Guolang, MA Chengwen. Ultrasonic transmission testing of the bonding interface curing process in Al-CFRP composite structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0007
    [3]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [4]LI Peiyuan, CAI Qiaoyan, LI Zengshan, FENG Jiahe. Damage tolerance analysis and research on reusable launch vehicle connection structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0221
    [5]ZHOU Hao, TAO Tao. Single nighttime image dehazing algorithm based on maximum reflectivity prior and variational regularization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0457
    [6]ZHANG Wenfei, ZHANG Huawei, MEI Yuan, XIAO Nan, ZHU Qiudong, LIAN Jing. A DINO remote sensing target detection algorithm combining efficient hybrid encoder and structural reparameterization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0320
    [7]FU T Y,YANG N,GU Y F,et al. Characterization of influence of fiber arrangement on CFRP induction heating curing process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):198-207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0259.
    [8]LI Jun, LI Wenlong, GAO Tenglong, LI Yanan, LIU Jingli. Temperature correction method for load measurement of aircraft composite structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0853
    [9]LI Xing, LOU Yang, DONG Jia-qi, XU Ji-feng, WU Hai-hong, SHI Wei-feng. Research on the application of composite structural battery in civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0701
    [10]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [11]XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0565.
    [12]HE Bing, WANG Fa-sheng, WANG Xing, SUN Fu-ming. Saliency-aware Triple Regularized Correlation Filter for UAV Object Tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0362
    [13]LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0619.
    [14]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [15]XIAO Yao, LI Yong, LI Dong-sheng, WANG Lei, JIANG Chao. Influence analysis of curing stress and stress relaxation on profile accuracy of carbon fiber reinforced composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0109
    [16]ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0555.
    [17]MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0244.
    [18]XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137
    [19]YANG Zhan-gang, KE Zhong-shu, YANG Xu-wei, BAO Xing-wang. Analysis of the influence of finishing process on the electrical properties of composite skin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0763
    [20]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
  • Cited by

    Periodical cited type(13)

    1. 周登,李雪峰,严刚,黄再兴. 基于电学成像与深度学习的蜂窝结构冲击损伤识别研究. 航空制造技术. 2024(13): 84-91 .
    2. 马敏,余浪,范文茹. 基于L1/L2正则化电阻抗层析成像算法的碳纤维增强复合材料损伤检测. 激光与光电子学进展. 2023(02): 225-232 .
    3. 姚明亮,周刚,张龙浩,欧泽波. 基于三维数字化的设备绝缘状态可视化监测模型. 液压气动与密封. 2023(02): 7-11+15 .
    4. 安文博,李明. 光电理疗仪电路故障排除及光辐射污染控制. 湘潭大学学报(自然科学版). 2022(01): 89-98 .
    5. 李红利,李硕,修春波,张荣华. 基于电磁式阵列传感器的平纹编织碳纤维复合材料检测方法. 天津工业大学学报. 2022(03): 48-54 .
    6. 马敏,于洁,范文茹. 基于改进低秩稀疏正则化的CFRP电阻抗层析成像算法研究. 振动与冲击. 2022(14): 151-157 .
    7. 张春伟,朱勇叙,李梓阳,夏岩磊. 基于BP神经网络的网架结构损伤定位研究. 河南城建学院学报. 2022(05): 5-11+23 .
    8. 张春伟,朱云刚,韩林,夏岩磊. 基于RBF神经网络的网架结构损伤定位研究. 邵阳学院学报(自然科学版). 2022(06): 41-48 .
    9. 何建,于海州,吴玉箫. 电阻层析成像系统硬件系统设计研究. 电子制作. 2021(09): 90-91+71 .
    10. 霍继伟,刘泽,王亚东,袁伟,王成飞. 优化Landweber迭代快速电磁层析成像图像重建算法. 北京航空航天大学学报. 2021(08): 1571-1579 . 本站查看
    11. 涂木兰,李海锋. 热像图增强的装配式建筑钢结构损伤检测研究. 计算机仿真. 2021(12): 420-423+444 .
    12. 范文茹,李靓瑶,王勃. 基于改进MRNSD算法的电阻抗层析成像. 北京航空航天大学学报. 2020(08): 1564-1573 . 本站查看
    13. 胡远洋. 基于电阻抗成像技术的航空器机体结构损伤监控研究. 电子测试. 2019(24): 37-38 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 82.3 %META: 82.3 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %其他: 0.1 %其他: 0.1 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.4 %[]: 0.4 %上海: 0.6 %上海: 0.6 %下葵涌: 0.2 %下葵涌: 0.2 %东莞: 1.3 %东莞: 1.3 %九江: 0.1 %九江: 0.1 %伦敦: 0.2 %伦敦: 0.2 %六安: 0.3 %六安: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 4.2 %北京: 4.2 %十堰: 0.4 %十堰: 0.4 %南京: 1.1 %南京: 1.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.3 %南通: 0.3 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.8 %嘉兴: 0.8 %大庆: 0.7 %大庆: 0.7 %天津: 3.8 %天津: 3.8 %孟买: 0.3 %孟买: 0.3 %宣城: 0.6 %宣城: 0.6 %巴中: 0.1 %巴中: 0.1 %常州: 1.4 %常州: 1.4 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.6 %库比蒂诺: 0.6 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %扬州: 1.5 %扬州: 1.5 %新乡: 0.2 %新乡: 0.2 %昆明: 0.4 %昆明: 0.4 %杭州: 0.8 %杭州: 0.8 %武汉: 0.4 %武汉: 0.4 %江门: 0.1 %江门: 0.1 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 6.7 %深圳: 6.7 %温州: 1.3 %温州: 1.3 %湖州: 0.4 %湖州: 0.4 %湛江: 0.2 %湛江: 0.2 %漯河: 6.9 %漯河: 6.9 %石家庄: 1.2 %石家庄: 1.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.3 %秦皇岛: 0.3 %绍兴: 0.8 %绍兴: 0.8 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.1 %芝加哥: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 21.2 %西宁: 21.2 %西安: 0.7 %西安: 0.7 %诺沃克: 0.2 %诺沃克: 0.2 %运城: 0.1 %运城: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.5 %郑州: 1.5 %镇江: 0.5 %镇江: 0.5 %长沙: 2.9 %长沙: 2.9 %雅加达: 0.2 %雅加达: 0.2 %青岛: 0.1 %青岛: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Seattle[]上海下葵涌东莞九江伦敦六安兰州北京十堰南京南昌南通厦门台州哥伦布嘉兴大庆天津孟买宣城巴中常州广州库比蒂诺张家口徐州惠州扬州新乡昆明杭州武汉江门沈阳洛阳海口淮安深圳温州湖州湛江漯河石家庄福州秦皇岛绍兴芒廷维尤芝加哥襄阳西宁西安诺沃克运城邯郸郑州镇江长沙雅加达青岛齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(1240) PDF downloads(344) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return