Volume 45 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
REN Pengfei, WANG Hongbo, ZHOU Guofenget al. Reentry trajectory optimization for hypersonic vehicle based on adaptive pseudospectral method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2257-2265. doi: 10.13700/j.bh.1001-5965.2019.0165(in Chinese)
Citation: REN Pengfei, WANG Hongbo, ZHOU Guofenget al. Reentry trajectory optimization for hypersonic vehicle based on adaptive pseudospectral method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2257-2265. doi: 10.13700/j.bh.1001-5965.2019.0165(in Chinese)

Reentry trajectory optimization for hypersonic vehicle based on adaptive pseudospectral method

doi: 10.13700/j.bh.1001-5965.2019.0165
More Information
  • Corresponding author: WANG Hongbo, E-mail: caltwang2017@126.com
  • Received Date: 15 Apr 2019
  • Accepted Date: 29 Jun 2019
  • Publish Date: 20 Nov 2019
  • In order to solve the reentry trajectory optimization for hypersonic vehicle, a three-degree-of-freedom reentry kinematic equation considering the earth rotation was established, and a reentry constraint model was built, which took America's universal space vehicle as the object. Firstly, Legendre-Gauss-Radau points were employed to transform the continuous-time optimal control problem into a nonlinear programming problem, and three typical optimization problems including maximum downrange, maximum crossrange and minimum change rate of path angle were discretized. Secondly, an estimation relational expression of relative error relying on decay rate of Legendre polynomial approximation was established, and an effective adaptive mesh refinement strategy was proposed. Finally, three typical reentry trajectory optimization problems were well solved. The simulation results show that the result solved by the proposed method is consistent with the integral of variable-step-size Runge-Kutta-Fehlberg method. Compared to the traditional adaptive pseudospectral method, the proposed method achieves more reasonable mesh refinement, less mesh iteration numbers, faster computation speed and less sensitivity to the user-specified parameters.

     

  • loading
  • [1]
    雍恩米, 陈磊, 唐国金.高超声速无动力远程滑翔飞行器多约束条件下的轨迹快速生成[J].宇航学报, 2008, 29(2):397-406. doi: 10.3873/j.issn.1000-1328.2008.02.002

    YONG E M, CHEN L, TANG G J.A survey of numerical methods for trajectory optimization of spacecraft[J].Journal of Astronautics, 2008, 29(2):397-406(in Chinese). doi: 10.3873/j.issn.1000-1328.2008.02.002
    [2]
    GILL P E, MURRAY W, SAUNDERS M A.SNOPT:An SQP algorithm for large-scale constrained optimization[J].SIAM review, 2005, 47(1):99-131. doi: 10.1137/S0036144504446096
    [3]
    WÄCHTER A, BIEGLER L T.On the implementation of an interior-point filter line-search algorithmfor large-scale nonlinear programming[J].Mathematical Programming, 2006, 106(1):25-57. doi: 10.1007/s10107-004-0559-y
    [4]
    BYRD R H, NOCEDAL J, WALTZ R A, et al.Knitro:An integrated package for nonlinear optimization[J].Large-Scale Nonlinear Optimization, 2006, 83:35-59. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214250459/
    [5]
    PONTRYAGIN L S.Mathematical theory of optimal processes[M].New York:Routledge, 2018.
    [6]
    BETTS J T.Practical methods for optimal control and estimation using nonlinear programming[M].Philadelphia:SIAM, 2010.
    [7]
    BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al.Direct trajectory optimization and costate estimation via an orthogonal collocation method[J].Journal of Guidance, Control, and Dynamics, 2006, 29(6):1435-1440. doi: 10.2514/1.20478
    [8]
    DARBY C L, GARG D, RAO A V.Costate estimation using multiple-interval pseudospectral methods[J].Journal of Spacecraft Rockets, 2011, 48(5):856-866. doi: 10.2514/1.A32040
    [9]
    GARG D, PATTERSON M, HAGER W W, et al.A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J].Automatica, 2010, 46(11):1843-1851. doi: 10.1016/j.automatica.2010.06.048
    [10]
    PATTERSON M A, RAO A V.Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems[J].Journal of Spacecraft Rockets, 2012, 49(2):364-377. http://cn.bing.com/academic/profile?id=28c4e1035ab619376e449f2280326bb4&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    CANUTO C, HUSSAINI M Y, QUARTERONI A, et al.Spectral methods in fluid dynamics[M].New York:Springer Science & Business Media, 2012.
    [12]
    DARBY C L, HAGER W W, RAO A V.An hp-adaptive pseudospectral method for solving optimal control problems[J].Optimal Control Applications and Methods, 2011, 32(4):476-502. doi: 10.1002/oca.957
    [13]
    PATTERSON M A, HAGER W W, RAO A V.A ph mesh refinement method for optimal control[J].Optimal Control Applications and Methods, 2015, 36(4):398-421. doi: 10.1002/oca.2114
    [14]
    LIU F J, HAGER W W, RAO A V.Adaptive mesh refinement for optimal control using nonsmoothness detection and mesh size reduction[J].Journal of the Franklin Institude, 2015, 352(10):4081-4106. doi: 10.1016/j.jfranklin.2015.05.028
    [15]
    PHILLIPS T H.A common aero vehicle (CAV) model, description, and employment guide[R].[S.L.]: Schafer Corporation for AFRL and AFSPC, 2003.
    [16]
    SHEN J, TANG T, WANG L L.Spectral methods:algorithms, analysis and applications[M].New York:Springer Science & Business Media, 2011:55-85.
    [17]
    WANG H, XIANG S.On the convergence rates of legendre approximation[J].Mathematicas of Computation, 2012, 81(278):861-877. http://cn.bing.com/academic/profile?id=ad897d53b380eee55b8ddc23ecd1e57c&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(674) PDF downloads(354) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return