MAO Shu-li, SUI Gang, ZHONG Wei-hong, et al. Electron Beam Curing and Its Application in Processing Field of Advanced Composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(6): 628-632. (in Chinese)
Citation: LIU Cheng, XIE Rongjian, WANG Shiyue, et al. Visualization experimental study of compensation chamber of a propylene loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 933-940. doi: 10.13700/j.bh.1001-5965.2019.0322(in Chinese)

Visualization experimental study of compensation chamber of a propylene loop heat pipe

doi: 10.13700/j.bh.1001-5965.2019.0322
Funds:

National Natural Science Foundation of China 51776121

More Information
  • Corresponding author: XIE Rongjian, E-mail: xierongjian@mail.sitp.ac.cn
  • Received Date: 20 Jun 2019
  • Accepted Date: 30 Aug 2019
  • Publish Date: 20 May 2020
  • By the employment of quartz compensation chamber and high-speed camera, the visualization experimental study on the compensation chamber of a propylene loop heat pipe was implemented, which mainly focused on the variation of state of working fluid in the compensation chamber with the effect of the working fluid inventory and heat transfer capacity, and the effect of working fluid inventory on the heat transfer performance of the loop heat pipe. The results indicate that the optimal working fluid inventory for the loop heat pipe with volume of 51.4 mL is about 19.7 g. The liquid levels inside the compensation chamber are lower than the bayonet when the fluid inventory is less than the optimal one, intense two-phase heat exchange between the evaporator and the compensation chamber is confirmed by the observation of obvious condensation and flow of the liquid on the outer surface of the bayonet, and the condensation rate and flow velocity increase with the rise of heat transfer capacity; the heat transfer thermal resistance of the loop heat pipe decreases and the heat transfer capacity below 280 K increases with the rise of the fluid inventory. With an optimal fluid inventory, the liquid level inside the compensation chamber immerses the bayonet and is close to the top of the evaporator core, and thus the best performance is obtained: a maximum power of 40 W that can be transferred below 280 K and a corresponding thermal resistance of 2 K/W. Liquid levels inside the compensation chamber are higher than the top of the evaporator core when the fluid inventory is more than the optimal one. The heat transfer thermal resistance increases and the heat transfer capacity below 280 K decreases with the rise of the fluid inventory. The liquid distribution inside the compensation chamber and evaporator core has considerable effect on the heat leak between the evaporator and the compensation chamber, which is a significant factor for the influence of working fluid inventory on the performance of loop heat pipe.

     

  • [1]
    MAYDANIK Y F.Loop heat pipes[J].Applied Thermal Engineering, 2005, 25(5):635-657.
    [2]
    KU J.Operating characteristics of loop heat pipes[C]//29th International Conference on Environmental System, 1999: 1999-01-2007.
    [3]
    GUO Y D, LIN G P, BAI L Z, et al.Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J].Energy Conversion and Management, 2016, 118:353-363. doi: 10.1016/j.enconman.2016.04.022
    [4]
    柏立战, 林贵平.环路热管复合芯传热与流动特性分析[J].北京航空航天大学学报, 2009, 35(12):1446-1450. https://bhxb.buaa.edu.cn/CN/abstract/abstract8587.shtml

    BAI L Z, LIN G P.Analysis of heat transfer and flow characteristics of composite wicks of loop heat pipes[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12):1446-1450(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract8587.shtml
    [5]
    VASILIEV L, LOSSOUARN D, ROMESTANT C, et al.Loop heat pipe for cooling of high-power electronic components[J].International Journal of Heat and Mass Transfer, 2009, 52(1-2):301-308. doi: 10.1016/j.ijheatmasstransfer.2008.06.016
    [6]
    RIEHL R R, DUTRA T.Development of an experimental loop heat pipe for application in future space missions[J].Applied Thermal Engineering, 2005, 25(1):101-112. doi: 10.1016/j.applthermaleng.2004.05.010
    [7]
    HOANG T T.Performance demonstration of hydrogen advanced loop heat pipe for 20-30 K cryocooling of far infrared sensors[C]//Proceedings of SPIE.Bellingham: SPIE, 2005: 1-10.
    [8]
    PASTUKHOV V G, MAYDANIK Y F.Low-noise cooling system for PC on the base of loop heat pipes[J].Applied Thermal Engineering, 2007, 27(5):894-901.
    [9]
    LU X Y, HUA T C, LIU M J, et al.Thermal analysis of loop heat pipe used for high-power LED[J].Thermochimica Acta, 2009, 493(1):25-29.
    [10]
    柏立战, 林贵平, 张红星.环路热管稳态建模及运行特性分析[J].北京航空航天大学学报, 2006, 32(8):894-898. doi: 10.3969/j.issn.1001-5965.2006.08.005

    BAI L Z, LIN G P, ZHANG H X.Steady state modeling of loop heat pipes and operating characteristics analysis[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8):894-898(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.08.005
    [11]
    YAN T, ZHAO Y N, LIANG J T, et al.Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J].International Journal of Heat and Mass Transfer, 2013, 66:334-337. doi: 10.1016/j.ijheatmasstransfer.2013.07.043
    [12]
    DU C H, BAI L Z, LIN G P, et al.Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP[J].International Journal of Heat and Mass Transfer, 2013, 63:454-462. doi: 10.1016/j.ijheatmasstransfer.2013.03.079
    [13]
    张红星, 林贵平, 丁汀, 等.环路热管温度波动现象的实验分析[J].北京航空航天大学学报, 2005, 31(2):116-120. https://bhxb.buaa.edu.cn/CN/abstract/abstract10331.shtml

    ZHANG H X, LIN G P, DING T, et al.Experimental investigation on temperature oscillation of loop heat pipes[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(2):116-120(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract10331.shtml
    [14]
    MO Q, LIANG J T.Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory[J].International Journal of Refrigeration, 2006, 29(4):519-527. doi: 10.1016/j.ijrefrig.2005.10.011
    [15]
    HOSSAIN M M. Experimental study on thermal performance and visualization of loop heat pipe[D].Greensboro: North Carolina A&T State University, 2013.
    [16]
    MO D C, ZOU G S, LU S S, et al.A flow visualization study on the temperature oscillations inside a loop heat pipe with flat evaporator [C]//Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic MicroSystems.New York: ASME, 2013: 1-6.
    [17]
    NEMEC P, MALCHO M.Distribution of heat flux by working fluid in loop heat pipe[C]//10th Anniversary International Conference on Experimental Fluid Mechanics, 2016, 114: 02081.
    [18]
    OKAMOTO A, HATAKENAKA R, MASE Y, et al.Visualization of a loop heat pipe using neutron radiography[J].Heat Pipe Science and Technology:An International Journal, 2011, 2(1-4):161-172. doi: 10.1615/HeatPipeScieTech.v2.i1-4.160
  • Relative Articles

    [1]WANG Wei, CUI Shenao, CHEN Jiahua, ZHAO Haoxiang, ZHANG Zhen. Research status and progress of bionic groove drag reduction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0898
    [2]FU Yangaoxiao, MEI Jie, DING Mingsong, CHEN Jianqiang, JIANG Tao, DONG Weizhong. Numerical simulation of jet interaction heating on reusable launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0053
    [3]RUAN S L,DONG Z,SUN Y,et al. Parameter optimization method of thrust vector/pneumatic rudder composite control law for aircraft based on singular value method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1332-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0227.
    [4]LI J P,JIN W Y,ZHAO Y D,et al. Unexpected electric breakdown control and thermal characteristics of ion thruster shell[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):865-873 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0162.
    [5]LI Jingyu, HAN Xudong, FU Yongling, ZHAO Jiang'ao. Cascade Sliding Mode Control of Electro-Hydrostatic Actuators Based on Multi-Disturbance Parallel Estimation and Compensation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0154
    [6]FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736
    [7]PENG Zheng, GUO Yuandong, FU Zhendong, ZHANG Hongxing, JIANG Lifeng, JIA Zhichao, BI Hanli, LIN Guiping. Experimental research and system integration verification of nitrogen cryogenic loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0482
    [8]LU K W,WANG X L,WANG B,et al. An online compensation method for random error of optical gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1614-1619 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0523.
    [9]FANG Zhen, XIE Yongqi, CHEN Lijun, PENG Zheng, LI Guoguang, ZHANG Hongxing. Design and experimental investigation on the heat transfer performance of a dual compensation chamber flat loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0613
    [10]QIN Haiyang, FU Jingwei, ZHANG Ruyi, WANG Li, BAI Lizhan. Experimental Study on the Operating Characteristics of a High Power Dual Compensation Chamber Loop Heat Pipe[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0397
    [11]SONG W,WANG Q,HE G Y. Visual calculation method of wing slipstream zone area on tiltrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2492-2502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0676.
    [12]JIA Zhi-chao, BI Han-li, PENG Zheng, LI Guo-guang, WU Qi, ZHANG Hong-xing, MIAO Jian-yin. Steady state modeling and characteristic analysis of propylene flat loop heat pipes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0814
    [13]WANG Z,PAN Y H,ZHAO R,et al. Effect of small inclination angle on heat transfer performance of Ω-shaped bending heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2314-2321 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0603.
    [14]FANG Z N,LIU C,ZHANG C Q,et al. Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3788-3793 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0886.
    [15]ZHAO Q,FENG K. Noncontact damage imaging method in lattice sandwich structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):206-211 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0194.
    [16]LIU G N,WANG L Q,WANG Y,et al. Thermal model of aircraft fuel tank based on oxygen consumption inerting technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3520-3527 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0097.
    [17]LU H B,CAI Y J,LI S. Optimization method of thermo-elastic lattice structure based on surrogate models of microstructures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3432-3444 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0155.
    [18]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [19]LU P,ZHAO Z M,GAO T,et al. Thermal control design and verification for high resolution stereo mapping camera system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):768-779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0854.
    [20]LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0500.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0605101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.7 %FULLTEXT: 26.7 %META: 70.5 %META: 70.5 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.4 %其他: 0.4 %上海: 0.4 %上海: 0.4 %加利福尼亚州: 0.8 %加利福尼亚州: 0.8 %北京: 2.9 %北京: 2.9 %南宁: 0.2 %南宁: 0.2 %台北: 1.2 %台北: 1.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.4 %大连: 0.4 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %库比蒂诺: 2.1 %库比蒂诺: 2.1 %张家口: 1.6 %张家口: 1.6 %成都: 0.2 %成都: 0.2 %杭州: 0.2 %杭州: 0.2 %武汉: 0.4 %武汉: 0.4 %江门: 0.2 %江门: 0.2 %池州: 0.4 %池州: 0.4 %沈阳: 1.2 %沈阳: 1.2 %泰州: 0.2 %泰州: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 11.4 %深圳: 11.4 %漯河: 0.6 %漯河: 0.6 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %芝加哥: 0.6 %芝加哥: 0.6 %莫斯科: 0.2 %莫斯科: 0.2 %西宁: 41.5 %西宁: 41.5 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.8 %运城: 0.8 %郑州: 0.6 %郑州: 0.6 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %隆德: 0.6 %隆德: 0.6 %青岛: 0.4 %青岛: 0.4 %其他其他上海加利福尼亚州北京南宁台北台州哥伦布大连天津宣城库比蒂诺张家口成都杭州武汉江门池州沈阳泰州淄博深圳漯河石家庄秦皇岛芒廷维尤芝加哥莫斯科西宁诺沃克贵阳运城郑州长春长沙隆德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(680) PDF downloads(263) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return