Feng Haocheng, Luo Mingqiang, Liu Hu, et al. Rapid cockpit configuration design method research[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (3): 285-290,296. (in Chinese)
Citation: GAO Yanfeng, FANG Xiang'en, XIONG Jun, et al. Tilted orbital milling method for hole-making of CFRP/titanium alloy laminated structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 851-861. doi: 10.13700/j.bh.1001-5965.2019.0330(in Chinese)

Tilted orbital milling method for hole-making of CFRP/titanium alloy laminated structures

doi: 10.13700/j.bh.1001-5965.2019.0330
Funds:

Aeronautical Science Foundation of China 2018ZE56013

Natural Science Foundation of Jiangxi Province of China 20171BAB206033

Key R & D Program of Jiangxi Province of China 20171BBE50011

More Information
  • Corresponding author: GAO Yanfeng, E-mail: gyf_2672@163.com
  • Received Date: 25 Jun 2019
  • Accepted Date: 22 Sep 2019
  • Publish Date: 20 May 2020
  • In a titled orbital milling process, the cutting tool is set as tilted against the axis of the hole with a small angle, which makes the revolving motion of cutting tool in conventional helical milling process be changed to a conical pendulum motion. It reduces the axial drilling forces and improves the hole-making quality. In this paper, the tilted orbital milling method is adopted to make a hole for the Carbon Fiber Reinforced Polymer (CFRP)/titanium alloy laminated structures. The material removal rates in the region of entrance and exit of hole, the ratios of the material removed by peripheral cutting edge and frontal cutting edge, and the velocity zero point in the frontal edge are analyzed. Compared with the conventional helical milling process, there is no sharply change of the material removal rate in the entrance and exit of hole, its peripheral cutting edge milling ratio is increased, and the the velocity zero point in the frontal edge is not cut. The axial cutting forces and cutting temperatures are analyzed through experiments. The results show that the axial cutting force and temperature decrease significantly in the tilted orbital milling process. The morphology of the holes is checked through Scanning Electron Microscope (SEM), and the results show that the delamination of CFRP in the region of entrance is eliminated and there is no obvious defect in the boundary region of CFRP and titanium alloy. The results of this research show that the tilted orbital milling method is helpful to improve the hole-making quality of CFRP/titanium alloy laminated structures and has a potential application in the industry.

     

  • [1]
    朱春燕, 蒋红宇, 张烘洲.飞机装配铣削制孔和钻孔技术对比分析[J].南京航空航天大学学报, 2012, 44(S1):37-41.

    ZHU C Y, JIANG H Y, ZHANG H Z.Comparing analysis of milling and drilling holes for aircraft assembly[J].Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(S1):37-41(in Chinese).
    [2]
    HOCHENG H, TSAO C C.Effects of special drill bits on drilling-induced delamination of composite materials[J].International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1403-1416. doi: 10.1016/j.ijmachtools.2005.10.004
    [3]
    TSAO C C.Effect of deviation on delamination by saw drill[J].International Journal of Machine Tools and Manufacture, 2007, 47(7-8):1132-1138. doi: 10.1016/j.ijmachtools.2006.09.016
    [4]
    TSAO C C, HOCHENG H.Effect of eccentricity of twist drill and candle stick drill on delamination in drilling composite materials[J].International Journal of Machine Tools & Manufacture, 2005, 45(2):125-130.
    [5]
    FANGMANN S, MEYER I, BRINKSMEIER E.Extended theory for orbital drilling(helical drill-milling) [J].Materialwissenschaft und Werkstofftechnik, 2011, 42(6):506-518. doi: 10.1002/mawe.201100699
    [6]
    DENKENA B, BOEHNKE D, DEGE J H.Helical milling of CFRP-titanium layer compounds[J].CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69. doi: 10.1016-j.cirpj.2008.09.009/
    [7]
    BRINKSMEIER E, FANGMANN S, MEYER I.Orbital drilling kinematics [J].Production Engineering, 2008, 2(3):277-283. doi: 10.1007/s11740-008-0111-7
    [8]
    BRINKSMEIER E, FANGMANN S.Orbital drilling of high tolerance boreholes[C]//International Conference on Applied Production Technology(APT'07).Bremen: BIAS-Verlag, 2007: 75-84.
    [9]
    DENKENA B, DE LEON L, DEGE J H.Kinematics and undeformed chip geometry in helical milling[J].Materialwissenschaft und Werkstofftechnik, 2008, 39(9):610-615. doi: 10.1002/mawe.200800343
    [10]
    陆翠.CFRP/Ti-6Al-4V叠层结构螺旋铣孔过程工艺优化研究[D].天津: 天津大学, 2012.

    LU C.The optimization research on helical milling of CFRP/Ti-6Al-4V stacks[D].Tianjin: Tianjin University, 2012(in Chinese).
    [11]
    邵振宇, 姜兴刚, 张德远, 等.CFRP旋转超声辅助钻削的缺陷抑制机理及实验研究[J].北京航空航天大学学报, 2019, 45(8):1613-1621. doi: 10.13700/j.bh.1001-5965.2018.0713

    SHAO Z Y, JIANG X G, ZHANG D Y, et al.Defect suppression mechanism and experimental study on rotary ultrasonic-assisted drilling of CFRP[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8):1613-1621(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0713
    [12]
    李哲, 张德远, 姜兴刚.钛合金旋转超声辅助钻削的出口毛刺[J].北京航空航天大学学报, 2017, 43(7):1380-1386. doi: 10.13700/j.bh.1001-5965.2016.0556

    LI Z, ZHANG D Y, JIANG X G.Exit burr in rotary ultrasonic-assisted drilling of titanium alloys[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1380-1386(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0556
    [13]
    TANAKA H, OHTA K, TAKIZAWA R, et al.Experimental study on tilted planetary motion drilling for CFRP[J].Procedia CIRP, 2012, 1:443-448. doi: 10.1016/j.procir.2012.04.079
    [14]
    WANG Q, WU Y B, ITOU T, et al.Proposal of a tilted helical milling technique for high quality hole drilling of CFRP:Kinetic analysis of hole formation and material removal[J].The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):4221-4235. doi: 10.1007/s00170-017-1106-3
    [15]
    WU Y B, WANG Q, NOMURA M.Proposal of tilt helical milling method for hole creation of carbon fiber reinforced plastic(CFRP)[J].Advanced Materials Research, 2016, 1136:190-195. doi: 10.4028/www.scientific.net/AMR.1136.190
    [16]
    WANG Q, WU Y B, LI Y, et al.Proposal of a tilted helical milling technique for high-quality hole drilling of CFRP:Analysis of hole surface finish[J].The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4):1041-1049. doi: 10.1007/s00170-018-2995-5
    [17]
    方向恩.CFRP/钛合金叠层材料陀螺铣孔新方法制孔质量研究[D].南昌: 南昌航空大学, 2019.

    FANG X E.Research on the hole-making quality of CFRP/Ti alloy laminated materials during a new method of gyro milling process[D].Nanchang: Nanchang Hangkong University, 2019(in Chinese).
  • Relative Articles

    [1]WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991.
    [2]BU Fanqiang, LIU Yong, WANG Xingguo, LI Xiaogao, SHEN Guolang, MA Chengwen. Ultrasonic transmission testing of the bonding interface curing process in Al-CFRP composite structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0007
    [3]YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0763.
    [4]LU Ming-yu, ZHANG Ming, WEI Yu-xuan, LI Bo, CUI Zhi-gang, ZHANG Kai-hu. Characteristics and Homogenization Removal Methods of Ultraviolet Femtosecond Laser Processing of Aerospace AFRP Composite Materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0096
    [5]LI Li-jian, TANG Shou-qian, YAO Jian-tao, WANG Ying-jia. Compliance modeling and strain analysis of double-hole force sensor[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0775
    [6]FU T Y,YANG N,GU Y F,et al. Characterization of influence of fiber arrangement on CFRP induction heating curing process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):198-207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0259.
    [7]PIAN Rong, YANG Fan, ZHANG Ling, LIU Feng-rui, WANG Lin-juan, ZHAO Li-bin. Failure mode study of composite laminated plates under compression-shear loading[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0084
    [8]HOU R L,WANG C Y,ZHOU P. Tensile properties of rapid repaired CCF300/QY8911 laminates with broken hole damage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2172-2183 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0485.
    [9]ZHANG Yun, LIU Jingqing, CHENG Geng, LEI Xin, XU Zhiyong. Establishment and Experimental Study of Polishing Model for Titanium Alloy Front and Rear Edges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0541
    [10]LI Xing, LI Zeng-shan, DENG Fan-chen, NIE Lei, ZHANG Tian. Sub-model Based Failure Analysis of Composite Hybrid Joint Structure[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0555
    [11]DONG H M,LI X G,MA X Q,et al. Research progress in mechanically fastened polymer-matrix composite joints with protruding-head bolts[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):745-760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0682.
    [12]WANG L Y,CHEN W H,JIANG Y S,et al. Measurement of ejection factor of new resin matrix composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2960-2967 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0056.
    [13]CAO S Y,LIU J Q,SONG G T,et al. Borehole image detection of aero-engine based on self-attention semantic segmentation model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1504-1515 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0448.
    [14]FAN X H,GOU B Y,CHEN T,et al. Hole edge crack monitoring technology of flexible eddy current array sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):726-734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0306.
    [15]LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0619.
    [16]XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0565.
    [17]XIAO Yao, LI Yong, LI Dong-sheng, WANG Lei, JIANG Chao. Influence analysis of curing stress and stress relaxation on profile accuracy of carbon fiber reinforced composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0109
    [18]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [19]XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137
    [20]XU Haiying, YANG Guang, ZHANG Wei, YANG Bo, SANG Xinghua, WANG Zhuang. Properties of gas discharge electron beam coaxial wire of fuse additive manufacturing and microstructure of TC4 titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2373-2380. doi: 10.13700/j.bh.1001-5965.2021.0147
  • Cited by

    Periodical cited type(1)

    1. 郑莉,崔友亮,杨奇可,张俊. 结冰气候室参数测试与应用分析. 气动研究与试验. 2025(02): 69-74 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.7 %FULLTEXT: 27.7 %META: 70.3 %META: 70.3 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.0 %其他: 6.0 %其他: 0.5 %其他: 0.5 %Seattle: 0.2 %Seattle: 0.2 %[]: 0.5 %[]: 0.5 %上海: 0.3 %上海: 0.3 %兰州: 0.5 %兰州: 0.5 %北京: 5.5 %北京: 5.5 %南宁: 0.2 %南宁: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 1.2 %哈尔滨: 1.2 %嘉兴: 0.2 %嘉兴: 0.2 %圣克拉拉: 0.2 %圣克拉拉: 0.2 %天津: 1.0 %天津: 1.0 %宣城: 0.2 %宣城: 0.2 %布达佩斯: 0.5 %布达佩斯: 0.5 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.3 %成都: 0.3 %扬州: 0.2 %扬州: 0.2 %杭州: 0.2 %杭州: 0.2 %江门: 0.2 %江门: 0.2 %沈阳: 0.5 %沈阳: 0.5 %深圳: 10.6 %深圳: 10.6 %漯河: 1.0 %漯河: 1.0 %石家庄: 1.3 %石家庄: 1.3 %耶拿: 0.3 %耶拿: 0.3 %芒廷维尤: 15.9 %芒廷维尤: 15.9 %芝加哥: 0.3 %芝加哥: 0.3 %莫斯科: 0.3 %莫斯科: 0.3 %西宁: 47.8 %西宁: 47.8 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.7 %运城: 0.7 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %银川: 0.3 %银川: 0.3 %长沙: 0.2 %长沙: 0.2 %其他其他Seattle[]上海兰州北京南宁台州合肥哈尔滨嘉兴圣克拉拉天津宣城布达佩斯广州张家口成都扬州杭州江门沈阳深圳漯河石家庄耶拿芒廷维尤芝加哥莫斯科西宁诺沃克贵阳运城邯郸郑州银川长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)

    Article Metrics

    Article views(766) PDF downloads(108) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return