Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
WEI Hongxi, ZHANG Yue. Zero-shot image classification based on generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363(in Chinese)
Citation: WEI Hongxi, ZHANG Yue. Zero-shot image classification based on generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363(in Chinese)

Zero-shot image classification based on generative adversarial network

doi: 10.13700/j.bh.1001-5965.2019.0363
Funds:

National Natural Science Foundation of China 61463038

Natural Science Foundation of Inner Mongolia Autonomous Region 2019ZD14

More Information
  • Corresponding author: WEI Hongxi. E-mail: cswhx@imu.edu.cn
  • Received Date: 08 Jul 2019
  • Accepted Date: 03 Aug 2019
  • Publish Date: 20 Dec 2019
  • The problem of zero-shot image classification has become a research focus in the field of image classification. In this paper, a method based on generative adversarial network (GAN) is used to solve the problem of zero-shot image classification. By generating image features of unseen classes, the zero-shot classification task is transformed into a conventional image classification task. At the same time, this paper makes modifications to the discriminant network in the generative adversarial network to make the discriminating process more accurate. The experimental results show that the performance of the proposed method has been increased by 0.4%, 0.4% and 0.5% on the datasets of AWA, CUB and SUN, respectively. Therefore, the proposed method can generate the better features by improving the generative adversarial networks, which results in solving the problem of zero-shot image calssification effectively.

     

  • loading
  • [1]
    LAROCHELLE H, ERHAN D, BENGIO Y.Zero-data learning of new tasks[C]//Proceedings of the Association for the Advancement of Artificial Intelligence. Palo Alto: AAAI Press, 2008: 646-651. http://www.cs.toronto.edu/~larocheh/publications/aaai2008_zero-data.pdf
    [2]
    CHANGPINYO S, CHAO W, GONG B, et al.Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 5327-5336. https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Changpinyo_Synthesized_Classifiers_for_CVPR_2016_paper.pdf
    [3]
    KODIROV E, XIANG T, GONG S.Semantic auto-encoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 4447-4456. http://openaccess.thecvf.com/content_cvpr_2017/papers/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.pdf
    [4]
    XIAN Y, SCHIELE B, AKATA Z.Zero-shot learning-the good, the bad and the ugly[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 3077-3086. https://arxiv.org/pdf/1703.04394.pdf
    [5]
    DING Z, SHAO M, FU Y.Low-rank embedded ensemble semantic dictionary for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 6005-6013. http://openaccess.thecvf.com/content_cvpr_2017/papers/Ding_Low-Rank_Embedded_Ensemble_CVPR_2017_paper.pdf
    [6]
    LAMPERT C H, NICKISCH H, HARMELING S.Attribute-based classification for zero-shot visual object categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3):453-465. doi: 10.1109/TPAMI.2013.140
    [7]
    ROMERA-PAREDES B, TORR P.An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the International Conference on Machine Learning.Madison: Omnipress, 2015: 2152-2161. http://proceedings.mlr.press/v37/romera-paredes15.pdf
    [8]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the Neural Information Processing Systems.Cambridge: MIT Press, 2014: 2672-2680. https://arxiv.org/pdf/1406.2661v1.pdf
    [9]
    XIAN Y, LORENZ T, SCHIELE B, et al.Feature generating networks for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 5542-5551. https://arxiv.org/pdf/1712.00981.pdf
    [10]
    ZHU Y, ELHOSEINY M, LIU B, et al.A generative adversarial approach for zero-shot learning from noisy texts[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 1004-1013. http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_A_Generative_Adversarial_CVPR_2018_paper.pdf
    [11]
    ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning.Madison: Omnipress, 2017: 214-223.
    [12]
    MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL].(2014-11-06)[2019-07-01].https://arxiv.org/abs/1411.1784.
    [13]
    LAMPERT C H, NICKISCH H, HARMELING S.Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2009: 951-958. https://blog.csdn.net/u011070272/article/details/73250102
    [14]
    WAH C, BRANSON S, WELINDER P, et al.The Caltech-UCSD Birds-200-2011 dataset:CNS-TR-2011-001[R].Pasadena:California Institute of Technology, 2011.
    [15]
    PATTERSON G, HAYS J.SUN attribute database: Discovering, annotating, and recognizing scene attributes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2012: 2751-2758.
    [16]
    NOROUZI M, MIKOLOV T, BENGIO S.Zero-shot learning by convex combination of semantic embeddings[C]//Proceedings of the International Conference on Learning Representations.Brookline: Microtome Publishing, 2014: 10-19. https://arxiv.org/abs/1312.5650
    [17]
    ZHANG Z, SALIGRAMA V.Zero-shot learning via semantic similarity embedding[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 4166-4174. https://arxiv.org/pdf/1509.04767.pdf
    [18]
    FROME A, CORRADO G S, SHLENS J, et al.DeViSE: A deep visual semantic embedding model[C]//Proceedings of the Neural Information Processing Systems.Cambridge: MIT Press, 2013: 2121-2129. http://www.cs.toronto.edu/~ranzato/publications/frome_nips2013.pdf
    [19]
    AKATA Z, REED S, WALTER D, et al.Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 2927-2936. https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Akata_Evaluation_of_Output_2015_CVPR_paper.pdf
    [20]
    AKATA Z, PERRONNIN F, HARCHAOUI Z, et al.Label-embedding for image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7):1425-1438. doi: 10.1109/TPAMI.2015.2487986
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(1305) PDF downloads(529) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return