Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
WEI Lesong, CHEN Junhao, NIU Yuzhenet al. Blind quality assessment for screen content images based on edge and structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367(in Chinese)
Citation: WEI Lesong, CHEN Junhao, NIU Yuzhenet al. Blind quality assessment for screen content images based on edge and structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367(in Chinese)

Blind quality assessment for screen content images based on edge and structure

doi: 10.13700/j.bh.1001-5965.2019.0367
Funds:

National Natural Science Foundation of China 61672158

Natural Science Foundation of Fujian Province 2019J2006

More Information
  • Corresponding author: NIU Yuzhen. E-mail: yuzhenniu@gmail.com
  • Received Date: 09 Jul 2019
  • Accepted Date: 03 Aug 2019
  • Publish Date: 20 Dec 2019
  • A screen content image (SCI) has great difference compared with a natural image, and an SCI contains more text, graphic, and special layout. Considering the influences of texts, graphics, pictures, and layout on quality of an SCI, a blind quality assessment metric for SCIs based on edge and structure (BES) has been proposed. Since texts, graphics, and pictures have a large number of edges and the human visual system is highly sensitive to edges, the BES metric first extracts edges using the imaginary part of the Gabor filter and computes an edge feature for each SCI. Second, a structure feature is extracted to represent the layout of an SCI. Specifically, the Scharr filter is exploited to calculate a local binary pattern (LBP) map which is used to compute a structure feature. Finally, a random forest regression algorithm is applied to map the edge and structure features to subjective scores. The experimental results show that in the database SIQAD and SCID, the Pearson linear correlation coefficient (PLCC) of the performance of the proposed BES index is 2.63% and 11.22% higher than the latest no reference index in the comparison respectively, and even higher than some full reference indexes.

     

  • loading
  • [1]
    WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. doi: 10.1089-fpd.2009.0394/
    [2]
    XUE W, ZHANG L, MOU X, et al.Gradient magnitude similarity deviation:A highly efficient perceptual image quality index[J].IEEE Transactions on Image Processing, 2014, 23(2):684-695. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1308.3052
    [3]
    MITTAL A, SOUNDARARAJAN R, BOVIK A C.Making a 'completely blind' image quality analyzer[J].IEEE Signal Processing Letters, 2013, 20(3):209-212. doi: 10.1109/LSP.2012.2227726
    [4]
    MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708. doi: 10.1109/TIP.2012.2214050
    [5]
    YANG H, FANG Y, LIN W.Perceptual quality assessment of screen content images[J].IEEE Transactions on Image Processing, 2015, 24(11):4408-4421. doi: 10.1109/TIP.2015.2465145
    [6]
    WANG S, GU K, ZENG K, et al.Objective quality assessment and perceptual compression of screen content images[J].IEEE Computer Graphics and Applications, 2016, 38(1):47-58. http://cn.bing.com/academic/profile?id=afb530fcb8d57edf81be66a52bddb021&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    WANG S, GU K, ZHANG X, et al.Reduced-reference quality assessment of screen content images[J].IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b4d028baf5733721ef44cf665499817
    [8]
    SHAO F, GAO Y, LI F, et al.Toward a blind quality predictor for screen content images[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48(9):1-10. http://cn.bing.com/academic/profile?id=2459d4882e48e7d12f4bde49d15c8aa2&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    FANG Y, YAN J, LI L, et al.No reference quality assessment for screen content images with both local and global feature representation[J].IEEE Transactions on Image Processing, 2018, 27(4):1600-1610. http://cn.bing.com/academic/profile?id=b45dfd75d33067d502084c9f002b9728&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    GUO X, HUANG L, GU K, et al.Naturalization of screen content images for enhanced quality evaluation[J].IEICE Transactions on Information and Systems, 2017, 100(3):574-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2199740
    [11]
    NI Z, ZENG H, MA L, et al.A Gabor feature-based quality assessment model for the screen content Images[J].IEEE Transactions on Image Processing, 2018, 27(9):4516-4528. doi: 10.1109/TIP.2018.2839890
    [12]
    DAUGMAN J G.Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J].Journal of the Optical Society of America A, 1985, 2(7):1160-1169. doi: 10.1364/JOSAA.2.001160
    [13]
    JONES J P, PALMER L A.An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[J].Journal of Neurophysiology, 1987, 58(6):1233-1258. doi: 10.1152/jn.1987.58.6.1233
    [14]
    GEUSEBROEK J M, VAN DEBOOMGAARD R, SMEULDERS A W M, et al.Color invariance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12):1338-1350. doi: 10.1109/34.977559
    [15]
    GEUSEBROEK J M, VAN DEBOOMGAARD R, SMEULDERS A W M, et al.Color and scale: The spatial structure of color images[C]//Proceedings of the European Conference on Computer Vision.Berlin: Springer, 2000: 331-341.
    [16]
    OJALA T, PIETIKAINEN M, MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].Classification with Local Binary Patterns, 2002, 24(7):971-987. http://cn.bing.com/academic/profile?id=bbab6ef5dd30d698066c963f5602e424&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    LI Q, LIN W, FANG Y.No-reference quality assessment for multiply-distorted images in gradient domain[J].IEEE Signal Processing Letters, 2016, 23(4):541-545. doi: 10.1109/LSP.2016.2537321
    [18]
    HUGHES H C, NOZAWA G, KITTERLE F.Global precedence, spatial frequency channels, and the statistics of natural images[J].Journal of Cognitive Neuroscience, 1996, 8(3):197-230. doi: 10.1162/jocn.1996.8.3.197
    [19]
    NI Z, MA L, ZENG H, et al.ESIM:Edge similarity for screen content image quality assessment[J].IEEE Transactions on Image Processing, 2017, 26(10):4818-4831. doi: 10.1109/TIP.2017.2718185
    [20]
    ERIC C L, DAMON M C.Most apparent distortion:Full-reference image quality assessment and the role of strategy[J].Journal of Electronic Imaging, 2010, 19(1):011006. doi: 10.1117/1.3267105
    [21]
    SHEIKH H R, BOVIK A C, DE VECIANA G, et al.An information fidelity criterion for image quality assessment using natural scene statistics[J].IEEE Transactions on Image Processing, 2005, 14(12):2117-2128. doi: 10.1109/TIP.2005.859389
    [22]
    LIU A, LIN W, NARWARIA M.Image quality assessment based on gradient similarity[J].IEEE Transactions on Image Processing, 2012, 21(4):1500-1512. doi: 10.1109/TIP.2011.2175935
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views(863) PDF downloads(351) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return