Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHANG Xinfeng, GUO Yutong, CAI Yiheng, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370(in Chinese)
Citation: ZHANG Xinfeng, GUO Yutong, CAI Yiheng, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370(in Chinese)

Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields

doi: 10.13700/j.bh.1001-5965.2019.0370
Funds:

National Key R & D Program of China 2017YFC1703300

More Information
  • Corresponding author: ZHANG Xinfeng. E-mail: zxf@bjut.edu.cn
  • Received Date: 09 Jul 2019
  • Accepted Date: 14 Aug 2019
  • Publish Date: 20 Dec 2019
  • The disadvantage of tongue image segmentation in traditional Chinese medicine are low accuracy, slow segmentation speed and manual calibration of candidate regions.To solve these problems, we propose an end-to-end tongue image segmentation algorithm. Compared with the traditional tongue segmentation algorithm, more accurate segmentation results can be obtained by the proposed method which does not need any manual operation. Firstly, the atrous convolution algorithm is used to increase the feature map of the network without increasing the parameters. Secondly, the atrous spatial pyramid pooling (ASPP) module is used to enable the network to learn the multi-scale feature of the tongue image through different receptive fields. Finally, the deep convolutional neural networks (DCNN) are combined with fully connected conditional random fields (CRF) to refine the edge of the segmented tongue image. The experimental results show that the proposed method outperforms traditional tongue image segmentation algorithm and popular DCNN with higher segmentation accuracy, and the mean intersection over union reaches 95.41%.

     

  • loading
  • [1]
    SHEN L S, WANG A M, WEI B G, et al.Image analysis for tongue characterization[J].Acta Electronica Sinica, 2001, 12(3):317-323. http://cn.bing.com/academic/profile?id=68f267c45b0201dfc3a1c378217fa924&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    张灵, 秦鉴.基于灰度投影和阈值自动选取的舌像分割方法[J].中国组织工程研究与临床康复, 2010, 14(9):1638-1641. doi: 10.3969/j.issn.1673-8225.2010.09.027

    ZHANG L, QIN J.Tongue-image segmentation based on gray projection and threshold-adaptive method[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(9):1638-1641(in Chinese). doi: 10.3969/j.issn.1673-8225.2010.09.027
    [3]
    李丹霞, 韦玉科.基于自适应阈值的舌像分割方法[J].计算机技术与发展, 2011, 21(9):63-65. doi: 10.3969/j.issn.1673-629X.2011.09.016

    LI D X, WEI Y K.Tongue image segmentation method based on adaptive thresholds[J].Computer Technology & Development, 2011, 21(9):63-65(in Chinese). doi: 10.3969/j.issn.1673-629X.2011.09.016
    [4]
    KASS M, WITKIN A, TERZOPOULOS D.Snakes:Active, contour models[J].International Journal of Computer Vision, 1988, 1(4):321-331. doi: 10.1007/BF00133570
    [5]
    傅之成, 李晓强, 李福凤.基于径向边缘检测和Snake模型的舌像分割[J].中国图象图形学报, 2019, 14(4):688-693. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904020

    FU Z C, LI X Q, LI F F.Tongue image segmentation based on snake model and radial edge detection[J].Journal of Image & Graphics, 2009, 14(4):688-693(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904020
    [6]
    LI Q L, XUE Y Q, WANG J Y, et al.Automated tongue segmentation algorithm based on hyperspectral image[J].Journal of Infrared & Millimeter Waves, 2007, 26(1):77-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb200701018
    [7]
    ROTHER C, KOLMOGOROV V, BLAKE A.GrabCut:Interactive foreground extraction using iterated graph cuts[J].ACM Transactions on Graphics, 2004, 23(3):309-314. doi: 10.1145/1015706.1015720
    [8]
    韦玉科, 范鹏, 曾贵.改进的GrabCut方法在舌诊系统中的应用[J].传感器与微系统, 2014, 33(10):157-160. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201410045

    WEI Y K, FAN P, ZENG G.Application of improved GrabCut method in tongue diagnosis system[J].Transducer & Microsystem Technologies, 2014, 33(10):157-160(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cgqjs201410045
    [9]
    陈善超, 符红光, 王颖.改进的一种图论分割方法在舌像分割中的应用[J].计算机工程与应用, 2012, 48(5):201-203. doi: 10.3778/j.issn.1002-8331.2012.05.058

    CHEN S C, FU H G, WANG Y.Application of improved graph theory image segmentation algorithm in tongue image segmentation[J].Computer Engineering & Applications, 2012, 48(5):201-203(in Chinese). doi: 10.3778/j.issn.1002-8331.2012.05.058
    [10]
    GUO J Y, YANG Y K, WU Q W, et al.Adaptive active contour model based automatic tongue image segmentation[C]//International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, 2017: 1386-1390. https://www.researchgate.net/publication/313807601_Adaptive_active_contour_model_based_automatic_tongue_image_segmentation
    [11]
    SHI M J, LI G Z, LI F F.C2G2FSnake:Automatic tongue image segmentation utilizing prior knowledge[J].Science China:Information Sciences, 2013, 56(9):1-14. http://www.cnki.com.cn/Article/CJFDTotal-JFXG201309014.htm
    [12]
    LIN B Q, XIE J W, LI C H.Deeptongue: Tongue segmentation via resnet[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2018: 1035-1039.
    [13]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2013: 1097-1105. https://www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks
    [14]
    SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2019-01-28].https://arxiv.org/abs/1409.1556.
    [15]
    GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2014: 580-587.
    [16]
    GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 15801732.
    [17]
    REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [18]
    SHELHAMER E, JONATHAN L, TREVOR D.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [19]
    NOH H, HONG S, HAN B.Learning deconvolution network for semantic segmentation[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 1520-1528.
    [20]
    BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [21]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [22]
    LI J, XU B C, BAN X J.A tongue image segmentation method based on enhanced HSV convolutional neural network[C]//International Conference on Cooperative Design, Visualization and Engineering.Berlin: Springer, 2017: 252-260. doi: 10.1007/978-3-319-66805-5_32
    [23]
    QU P L, ZHANG H, ZHUO L, et al.Automatic tongue image segmentation for traditional Chinese medicine using deep neural network[C]//Intelligent Computing Theories and Application.Berlin: Springer, 2017: 247-259. doi: 10.1007%2F978-3-319-63309-1_23
    [24]
    HOSCHNEIDER M, KRONLAND-MARTINET R, MORLET J, et al.A real-time algorithm for signal analysis with the help of the wavelet transform[C]//Wavelets: Time-Frequency Methods Phase Space, 1989: 289-297. doi: 10.1007%2F978-3-642-75988-8_28
    [25]
    PHILIPP K, KOLTUN V.Efficient inference in fully connected CRFs with Gaussian edge potentials[J].Advances in Neural Information Processing Systems, 2011, 24(1):109-117. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1210.5644
    [26]
    HARIHARAN B, ARBELAEZ P, BOURDEV L, et al.Semantic contours from inverse detectors[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2011: 991-998. https://ieeexplore.ieee.org/document/6126343
    [27]
    RONNEBERGER O, FISCHER P, BROX T.U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(1179) PDF downloads(754) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return