Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHAN Ying, GAO Yan, XIE Lingyunet al. Aesthetic feature analysis and classification of Chinese traditional painting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375(in Chinese)
Citation: ZHAN Ying, GAO Yan, XIE Lingyunet al. Aesthetic feature analysis and classification of Chinese traditional painting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375(in Chinese)

Aesthetic feature analysis and classification of Chinese traditional painting

doi: 10.13700/j.bh.1001-5965.2019.0375
Funds:

the Fundamental Research Funds for the Central Universities 18CUCTJ086

More Information
  • Corresponding author: XIE Lingyun, E-mail: xiely@cuc.edu.cn
  • Received Date: 09 Jul 2019
  • Accepted Date: 19 Aug 2019
  • Publish Date: 20 Dec 2019
  • Automatic classification of aesthetics in images has been a popular research field in these years. Chinese traditional painting is a pivotal embodiment of Chinese traditional arts, so its aesthetics shows a great potential for researching. In this paper, the automatic classification study and relevant feature analysis of aesthetics were conducted in a Chinese painting database annotated with 5 classes of aesthetics. First, based on subjective annotation, by employing feature extraction and selection, 33 optimal image features were filtered out for aesthetic classification. Then, a mapping analysis was conducted on the relationship among objective features, subjective aesthetics and image artistic elements. Finally, an automatic recognition using a variety of mainstream classifiers was implemented on the optimal feature set, and an acceptable performance was obtained, which proves the feasibility and effectiveness of automatic classification of Chinese painting aesthetics. The results show that the main artistic elements (in order) of aesthetic classification for Chinese traditional painting are:color, brushwork, brightness and lines.

     

  • loading
  • [1]
    JOSHI D, DATTA R.Aesthetics and emotions in images[J]. IEEE Signal Processing Magazine, 2011, 28(5):94-115. doi: 10.1109/MSP.2011.941851
    [2]
    PERRONNIN F, MARCHESOTTI L, MURRAY N.AVA: A large-scale database for aesthetic visual analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2012: 2408-2415.
    [3]
    LUO W, WANG X, TANG X.Content-based photo quality assessment[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2012: 2206-2213.
    [4]
    LI C, CHEN T.Aesthetic visual quality assessment of paintings[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2):236-252. doi: 10.1109/JSTSP.2009.2015077
    [5]
    MOHAMMAD S M, TURNEY P D.WikiArt emotions: An annotated dataset of emotions evoked by art[C]//Proceedings of the 11th Edition of the Language Resources and Evaluation Conference, 2018.
    [6]
    MENSINK T, VAN GEMERT J C.The Rijksmuseum challenge: Museum-centered visual recognition[C]//Proceedings of International Conference on Multimedia Retrieval.New York: ACM, 2014: 451-454.
    [7]
    KE Y, TANG X, JING F, et al.The design of high-level features for photo quality assessment[C]//Proceedings of IEEE Comference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2006: 419-426.
    [8]
    LUO Y, TANG X.Photo and video quality evaluation: Focusing on the subject[C]//Proceedings of European Conference on Computer Vision.Berlin: Springer, 2008: 386-399.
    [9]
    WU Y, BAUCKHAGE C, THURAU C, et al.The good, the bad, and the ugly: Predicting aesthetic image labels[C]//Proceedings of International Conference on Pattern Recognition.Piscataway, NJ: IEEE Press, 2010: 1586-1589.
    [10]
    陈俊杰, 杜雅娟, 李海芳.中国画的特征提取及分类[J].计算机工程与应用, 2008, 44(15):166-169. doi: 10.3778/j.issn.1002-8331.2008.15.052

    CHEN J J, DU Y J, LI H F.Feature extraction and classification of Chinese painting[J]. Computer Engineering and Applications, 2008, 44(15):166-169(in Chinese). doi: 10.3778/j.issn.1002-8331.2008.15.052
    [11]
    刘晓巍, 普园媛, 黄亚群, 等.绘画视觉艺术风格的量化统计与分析[J].计算机科学与探索, 2013, 7(10):962-972. http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201310008

    LIU X W, PU Y Y, HUANG Y Q, et al.Quantitative statistics and analysis for painting visual art style[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(10):962-972(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201310008
    [12]
    王征, 孙美君, 韩亚洪, 等.监督式异构稀疏特征选择的国画分类和预测[J].计算机辅助设计与图形学学报, 2013, 25(12):1848-1855. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201312010

    WANG Z, SUN M J, HAN Y H, et al.Supervised heterogeneous sparse feature selection for Chinese paintings classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(12):1848-1855(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201312010
    [13]
    盛家川, 李玉芝.国画的艺术目标分割及深度学习与分类[J].中国图象图形学报, 2018, 23(8):1193-1206. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201808009

    SHENG J C, LI Y Z.Learning artistic objects for improved classification of Chinese paintings[J]. Journal of Image and Graphics, 2018, 23(8):1193-1206(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201808009
    [14]
    高峰, 聂婕, 黄磊, 等.基于表现手法的国画分类方法研究[J].计算机学报, 2017, 40(12):2871-2882. doi: 10.11897/SP.J.1016.2017.02871

    GAO F, NIE J, HUANG L, et al.Traditional Chinese painting classification based on painting technique[J]. Chinese Journal of Computers, 2017, 40(12):2871-2882(in Chinese). doi: 10.11897/SP.J.1016.2017.02871
    [15]
    李玉芝, 盛家川, 华斌.中国画分类的改进嵌入式学习算法[J].计算机辅助设计与图形学学报, 2018, 30(5):893-900. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201805017

    LI Y Z, SHENG J C, HUA B.Improved embedded learning for classification of Chinese paintings[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5):893-900(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201805017
    [16]
    张佳婧, 彭韧, 王健, 等.水墨画计算审美评估[J].软件学报, 2016, 27(增刊2):220-233.

    ZHANG J J, PENG R, WANG J, et al.Computational aesthetic evaluation of Chinese wash paintings[J]. Journal of Software, 2016, 27(Suppl.2):220-233(in Chinese).
    [17]
    陈丽君.美感与积极情绪的关系及对变化觉察的影响[D].重庆: 西南大学, 2010.

    CHEN L J.The relationship between aesthetic experience and positive emotion and the impact on change detection[D]. Chongqing: Southwest University, 2010(in Chinese).
    [18]
    ISRAELI N.Affective reactions to painting reproductions:A study in the psychology of esthetics[J]. Journal of Applied Psychology, 1928, 12(1):125-139.
    [19]
    HAGTVEDT H, HAGTVEDT R, PATRICK V M.The perception and evaluation of visual art[J]. Empirical Studies of the Arts, 2008, 26(2):197-218. doi: 10.2190/EM.26.2.d
    [20]
    STAMATOPOULOU D.Integrating the philosophy and psychology of aesthetic experience:Development of the aesthetic experience scale[J]. Psychological Reports, 2004, 95(2):673-695.
    [21]
    SILVIA P J, FAYN K, NUSBAUM E C, et al.Openness to experience and awe in response to nature and music:Personality and profound aesthetic experiences[J]. Psychology of Aesthetics Creativity & the Arts, 2015, 9(4):376-384.
    [22]
    MARKOVIC' S.Aesthetic experience and the emotional content of paintings[J]. Psihologija, 2010, 43(1):47-64. doi: 10.2298/PSI1001047M
    [23]
    ROWOLD J.Instrument development for esthetic perception assessment[J]. Journal of Media Psychology Theories Methods & Applications, 2008, 20(1):35-40.
    [24]
    HAGER M, HAGEMANN D, DANNER D, et al.Assessing aesthetic appreciation of visual artworks-The construction of the art reception survey (ARS)[J]. Psychology of Aesthetics Creativity & the Arts, 2012, 9(4):320-333.
    [25]
    KARINA V.Die emotionale Wirkung moderner Kunst[D]. Deutschland: Universität Wien, 2010.
    [26]
    丁月华.概念隐喻理解中的美感体验对科学概念理解的作用研究[D].重庆: 西南大学, 2008.

    DING Y H.A research on the role of aesthetic experience of concept metaphor understanding to the scientific concept understanding[D]. Chongqing: Southwest University, 2008(in Chinese).
    [27]
    HEVNER K.Experimental studies of the elements of expression in music[J]. American Journal of Psychology, 1936, 48(2):246-268. doi: 10.2307-1415746/
    [28]
    孟子厚.音质主观评价的实验心理学方法[M].北京:国防工业出版社, 2008:84-89.

    MENG Z H.Experimental psychological method of subjective evaluation of sound quality[M]. Beijing:National Defense Industry Press, 2008:84-89(in Chinese).
    [29]
    CATTELL R B.The scientific use of factor analysis in behavioral and life sciences[M]. Berlin:Springer, 1978.
    [30]
    湛颖, 高妍, 谢凌云.中国国画情感-美感数据库[J/OL].中国图像图形学报(2019-06-19)[2019-07-03].http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=201903210000001&journal_id=jig.

    ZHAN Y, GAO Y, XIE L Y.A database for emotion and aesthetic analysis on Chinese traditional paintings[J/OL]. Journal of Image and Graphics(2019-06-19)[2019-07-03]. http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=201903210000001&journal_id=jig(in Chinese).
    [31]
    HE K, SUN J, TANG X, et al.Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2009: 1956-1963.
    [32]
    CANNY J F.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020
    [33]
    DONG Z, TIAN X.Multi-level photo quality assessment with multi-view features[J]. Neurocomputing, 2015, 168(30):308-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83cda8c0f4734e5c195f6102bb379c64
    [34]
    KOCH C, ULLMAN S.Shifts in selective visual attention:Towards the underlying neural circuitry[J]. Human Neurobiology, 1987, 4(2):115-141.
    [35]
    GUYON I, WESTON J, BARNHILL S, et al.Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1):389-422. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2216417
    [36]
    周志华.机器学习[M].北京:清华大学出版社, 2016:26-30.

    ZHOU Z H.Machine learning[M]. Beijing:Tsinghua University Press, 2016:26-30(in Chinese).
    [37]
    GEURTS P, ERNST D, WEHENKEL L, et al.Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227516002/
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views(1221) PDF downloads(416) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return