Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
YANG Bin, LI Heping, ZENG Huiet al. Three-dimensional human pose estimation based on video[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2463-2469. doi: 10.13700/j.bh.1001-5965.2019.0384(in Chinese)
Citation: YANG Bin, LI Heping, ZENG Huiet al. Three-dimensional human pose estimation based on video[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2463-2469. doi: 10.13700/j.bh.1001-5965.2019.0384(in Chinese)

Three-dimensional human pose estimation based on video

doi: 10.13700/j.bh.1001-5965.2019.0384
Funds:

National Natural Science Foundation of China 61973029

the Fundamental Research Funds for the Central Universities FRF-BD-17-002A

More Information
  • Corresponding author: ZENG Hui. E-mail: hzeng@ustb.edu.cn
  • Received Date: 09 Jul 2019
  • Accepted Date: 19 Aug 2019
  • Publish Date: 20 Dec 2019
  • The existing 3D human pose estimation method focuses on estimating the 3D pose of the human body through a single frame image, while ignoring the correlation between the front and back frames in the video. Therefore, by investigating the information of the video in the time dimension, the accuracy of the 3D human pose estimation can be further improved. Based on this, the convolutional neural network structure that can fully extract the temporal information in the video is designed. It has the advantage of low computational resources and high precision. The complete 3D human pose can be restored only by using the coordinates of the 2D articulation point as input. Furthermore, a new loss function is proposed, which uses the continuity of human pose between adjacent frames to improve the smoothness of 3D pose estimation in video sequences, and also solves the problem of accuracy degradation due to lack of inter-frame information. By testing on the Human 3.6M dataset, the experimental results indicate that the average test error of the proposed method is 1.2 mm lower than that of the current standard 3D pose estimation algorithm, and the proposed method has a high accuracy for the 3D human pose estimation of video sequences.

     

  • loading
  • [1]
    BO L, SMINCHISESCU C.Twin gaussian processes for structured prediction[J].International Journal of Computer Vision, 2010, 87(1-2):28. doi: 10.1007/s11263-008-0204-y
    [2]
    RADWAN I, DHALL A, GOECKE R.Monocular image 3D human pose estimation under self-occlusion[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2013: 1888-1895.
    [3]
    ZHOU X, HUANG Q, SUN X, et al.Towards 3D human pose estimation in the wild: A weakly supervised approach[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 398-407.
    [4]
    PAVLAKOS G, ZHOU X, DERPANIS K G, et al.Coarse-to-fine volumetric prediction for single-image 3D human pose[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 7025-7034.
    [5]
    NEWELL A, YANG K, DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision.Berlin: Springer, 2016: 483-499.
    [6]
    PAVLAKOS G, HU L, ZHOU X, et al.Learning to estimate 3D human pose and shape from a single color image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 459-468.
    [7]
    ROGEZ G, SCHMID C.Mocap-guided data augmentation for 3D pose estimation in the wild[C]//Advances in Neural Information Processing Systems, 2016: 3108-3116.
    [8]
    VAROL G, ROMERO J, MARTIN X, et al.Learning from synthetic humans[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 109-117.
    [9]
    CHEN C H, RAMANAN D.3D human pose estimation=2D pose estimation+matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 7035-7043.
    [10]
    BOGO F, KANAZAWA A, LASSNER C, et al.Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image[C]//European Conference on Computer Vision.Berlin: Springer, 2016: 561-578.
    [11]
    PISHCHULIN L, INSAFUTDINOV E, TANG S, et al.Deepcut: Joint subset partition and labeling for multiperson pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 4929-4937.
    [12]
    LOPER M, MAHMOOD N, ROMERO J, et al.SMPL:A skinned multi-person linear model[J].ACM Transactions on Graphics(TOG), 2015, 34(6):248. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026562337/
    [13]
    LUVIZON D C, PICARD D, TABIA H.2D/3D pose estimation and action recognition using multitask deep learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 5137-5146.
    [14]
    MORENO-NOGUER F.3D human pose estimation from a single image via distance matrix regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 2823-2832.
    [15]
    ZHOU X, ZHU M, LEONARDOS S, et al.Sparseness meets deepness: 3D human pose estimation from monocular video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 4966-4975.
    [16]
    MARTINEZ J, HOSSAIN R, ROMERO J, et al.A simple yet effective baseline for 3D human pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 2640-2649.
    [17]
    DROVER D, MV R, CHEN C H, et al.Can 3D pose be learned from 2D projections alone [C]//Proceedings of the European Conference on Computer Vision(ECCV).Berlin: Springer, 2018: 78-94.
    [18]
    OORD A, DIELEMAN S, ZEN H, et al.WaveNet: A generative model for raw audio[EB/OL].(2016-09-19)[2019-06-13].https: //arxiv.org/abs/1609.03499.
    [19]
    HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 770-778.
    [20]
    IONESCU C, PAPAVA D, OLARU V, et al.Human3.6 M:Large scale datasets and predictive methods for 3D human sensing in natural environments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7):1325-1339. http://cn.bing.com/academic/profile?id=da0c6ab36492ab30024dc329e4c6a4a9&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    CHEN Y, WANG Z, PENG Y, et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 7103-7112.
    [22]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al.Dropout:A simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research, 2014, 15(1):1929-1958. http://d.old.wanfangdata.com.cn/Periodical/kzyjc200606005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(1373) PDF downloads(478) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return