Volume 45 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHANG Fukai, RUI Ting, HE Lei, et al. A low-cost indoor passable area modeling method for robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393(in Chinese)
Citation: ZHANG Fukai, RUI Ting, HE Lei, et al. A low-cost indoor passable area modeling method for robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393(in Chinese)

A low-cost indoor passable area modeling method for robots

doi: 10.13700/j.bh.1001-5965.2019.0393
More Information
  • Corresponding author: RUI Ting. E-mail: rtinguu@sohu.com
  • Received Date: 16 Jul 2019
  • Accepted Date: 18 Aug 2019
  • Publish Date: 20 Dec 2019
  • Monocular vision-based simultaneous localization and mapping (SLAM) is a popular technology in the field of robotics in recent years. However, due to the huge computation resource required by reconstruction, mainstream methods are not able to generate meaningful reconstruction of scene in real time on platforms with low computing power. This paper proposes a new fast passable area modeling method for the specific situation of indoor environment and small robots. The method is based on the monocular feature-based SLAM. Firstly, it obtains the road segmentation image through segmentation in the HSV color space with adaptive threshold. Then, the system cross-matches the segmentation with the sparse point cloud generated by SLAM, to obtain the ground plane and accurate ground segmentation area. Finally, it projects the ground segmentation area to the ground plane for dense modeling of the floor. In the experiment of indoor scene, the average calculation speed of the proposed method can reach 21 frames per second, and the speed is about 70% of ORB-SLAM, which can meet the real-time requirements of mobile platforms. The position error for the floor plane is 5.8% on average, and the modeling error of the road width is between 3.5% and 12.8%.

     

  • loading
  • [1]
    LI Z, TANG J.Weakly supervised deep metric learning for community-contributed image retrieval[J].IEEE Transactions on Multimedia, 2015, 17(11):1989-1999. doi: 10.1109/TMM.2015.2477035
    [2]
    LIU H, ZHANG G, BAO H.A survey of monocular simultaneous localization and mapping[J].Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6):855-868. https://www.researchgate.net/publication/305166339_A_survey_of_monocular_simultaneous_localization_and_mapping
    [3]
    TURAN M, ALMALIOGLU Y, ARAUJO H, et al.A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots[J].International Journal of Intelligent Robotics and Applications, 2017, 1(4):399-409. doi: 10.1007/s41315-017-0036-4
    [4]
    JAN S, GUMHOLD S, CREMERS D.Real-time dense geometry from a handheld camera[C]//Proceedings of the Pattern Recognition-32nd DAGM Symposium.Berlin: Springer, 2010: 22-24.
    [5]
    ENGEL J, KOLTUN V, CREMERS D.Direct sparse odometry[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 40(3):611-625. http://cn.bing.com/academic/profile?id=baa8d09846cd2fd94b28e03c489ee5c9&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    KIM J H, CADENA C, REID I.Direct semi-dense SLAM for rolling shutter cameras[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2016: 1308-1315.
    [7]
    BAILEY T, NIETO J, GUIVANT J, et al.Consistency of the EKF-SLAM algorithm[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway, NJ: IEEE Press, 2006: 9-15.
    [8]
    PIRKER K, MATTHIAS R, BISCHOF H.CD-SLAM-Continuous localization and mapping in a dynamic world[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Piscataway, NJ: IEEE Press, 2011: 25-30.
    [9]
    GEE A P.MAYOL-CUEVAS W.Real-time model-based SLAM using line segments[C]//Proceedings of the International Symposium on Visual Computing.Berlin: Springer, 2006: 354-363.
    [10]
    NEWCOMBE R A, LOVEGROVE S J, DAVISON A J.DTAM: Dense tracking and mapping in real-time[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Piscataway, NJ: IEEE Press, 2011: 6-13.
    [11]
    ENGEL J, SCHÖPS T, CREMERS D.LSD-SLAM: Large-scale direct monocular SLAM[C]//Proceedings of the European Conference on Computer Vision (ECCV).Berlin: Springer, 2014: 834-849.
    [12]
    TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al.Bundle adjustment a modern synthesis[C]//Proceedings of the Vision Algorithms: Theory and Practice.Berlin: Springer, 2000: 298-372.
    [13]
    ULRICH I, NOURBAKHSH I R.Appearance-based place recognition for topological localization[C]//Proceedings of the International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2000: 1023-1029.
    [14]
    DAVISON A J, REID I D, MOLTON N D, et al.MonoSLAM:Real-time single camera SLAM[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1052-1067. doi: 10.1109/TPAMI.2007.1049
    [15]
    KLEIN G, MURRAY D.Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality.Piscataway, NJ: IEEE Press, 2007: 225-234.
    [16]
    MUR-ARTAL R, MONTIEL J M M, TARDÓS J D.ORB-SLAM:A versatile and accurate monocular SLAM System[J].IEEE Transactions Robotics, 2015, 31(5):1147-1163. doi: 10.1109/TRO.2015.2463671
    [17]
    NEWCOMBE R A, DAVISON A J.Live dense reconstruction with a single moving camera[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE Press, 2010: 1498-1505.
    [18]
    MURARTAL R, TARDOS J D.Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM[C]//Proceedings of the Robotics Science and Systems, 2015.
    [19]
    HINZMANN T, SCHNEIDER T, DYMCZYK M, et al.Robust map generation for fixed-wing UAVs with low-cost highly-oblique monocular cameras[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems.Piscataway, NJ: IEEE Press, 2016: 3261-3268.
    [20]
    蒙山, 唐文名.单目SLAM直线匹配增强平面发现方法[J].北京航空航天大学学报, 2017, 43(4):660-666. https://bhxb.buaa.edu.cn/CN/abstract/abstract14265.shtml

    MENG S, TANG W M.Monocular SLAM linear matching enhanced plane discovery method[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):660-666(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14265.shtml
    [21]
    VON STUMBERG L, USENKO V, ENGEL J, et al.Autonomous exploration with a low-cost quadrocopter using semi-dense monocular SLAM[C]//Processing of the European Conference on Mobile Robots, 2017.
    [22]
    蒋林, 郭晨, 朱志超.嵌入式平台上的三维重建算法研究[J].机械设计与制造, 2018, 330(8):264-266. http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201808073

    JIANG L, GUO C, ZHU Z C.Research on 3D reconstruction algorithm based on embedded platform[J].Machinery Design & Manufacture, 2018, 330(8):264-266(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201808073
    [23]
    BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for scene segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [24]
    黄寅.基于HSV颜色空间与形态学的车辆目标分割算法[J].大庆师范学院学报, 2017, 37(6):11-15. http://d.old.wanfangdata.com.cn/Periodical/dqgdzkxxxb201706003

    HUANG Y, Vehicle target segmentation algorithm based on HSV color space and morphology[J].Journal of Daqing Normal University, 2017, 37(6):11-15(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqgdzkxxxb201706003
    [25]
    闫敬文.数字图像处理:MATLAB版[M].北京:国防工业出版社, 2011:125-127.

    YAN J W.Digital image processing by MATLAB[M].Beijing:National Defence Industry Press, 2011:125-127(in Chinese).
    [26]
    李鹏飞, 吴海娥, 景军锋, 等.点云模型的噪声分类去噪算法[J].计算机工程与应用, 2016, 52(20):188-192. doi: 10.3778/j.issn.1002-8331.1603-0354

    LI P F, WU H E, JING J F, et al.Noise classification and denoising algorithm for point cloud model[J].Computer Engineering and Applications, 2016, 52(20):188-192(in Chinese). doi: 10.3778/j.issn.1002-8331.1603-0354
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(1122) PDF downloads(607) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return