Volume 46 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LI Wen, XU Kening, HUANG Yong, et al. Numerical simulation of spreading process of lunar regolith simulant by DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443(in Chinese)
Citation: LI Wen, XU Kening, HUANG Yong, et al. Numerical simulation of spreading process of lunar regolith simulant by DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1863-1873. doi: 10.13700/j.bh.1001-5965.2019.0443(in Chinese)

Numerical simulation of spreading process of lunar regolith simulant by DEM

doi: 10.13700/j.bh.1001-5965.2019.0443
Funds:

National Natural Science Foundation of China 51705490

National Natural Science Foundation of China 51876004

More Information
  • Corresponding author: LI Wen. E-mail:mosquato@buaa.edu.cn
  • Received Date: 16 Aug 2019
  • Accepted Date: 18 Apr 2020
  • Publish Date: 20 Oct 2020
  • Spaced-based Selective Laser Melting (SLM) technique in combination with In-Situ Resource Utilization (ISRU) concept can be an off-world manufacturing solution to the significant engineering challenge on the large-scale construction for extra-terrestrial bases. Powder spreading process in SLM has a major impact on the characteristics and quality of final part. The geometric shape of the lunar regolith simulant particles was modeled by means of a non-spherical particle superposition model method. The particle's dynamic model was established based on linear spring-damping contact model, Hamaker theory and Newton's laws of motion. A three-dimensional Discrete Elemeat Method (DEM) technique with soft-sphere approach was employed to investigate the rheological behavior of the lunar regolith simulant powder during spreading process under various conditions. The results show that the proposed model and method can be used to study the flowability and packing behavior of lunar regolith simulant powder system as a function of process and environmental condition parameters. Lunar reduced gravity leads to larger values of surface roughness and smaller values of packing density and averaged coordination number of powder bed; the quality of lunar regolith simulant powder bed during spreading process under lunar gravity can be improved by reducing spreading speed and geometrically optimizing blade type spreader profile, resulting in a denser and more uniform powder bed.

     

  • loading
  • [1]
    SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for Moon/Mars exploration[C]//62nd International Astronautical Congress, 2011: JSC-CN-24659.
    [2]
    FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//International Mechanical Engineering Congress and Exposition.New York: ASME, 2013: IMECE2013-64334.
    [3]
    HAFLEY R A.Electron beam free-form fabrication in the space environment[C]//Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 8-11.
    [4]
    PRATER T, WERKHEISER N, LEDBETTER F.3D printing in zero G technology demonstration mission:Complete experimental results and summary of related material modeling efforts[J].International Journal of Advanced Manufacturing Technology, 2019, 101(1-4):391-417. doi: 10.1007/s00170-018-2827-7
    [5]
    WERKHEISER N.In-space manufacturing: 3D printing in space technology demonstration[C]//National Space & Missile Materials Symposium, 2015: M15-4685.
    [6]
    CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a Moon outpost exploiting lunar soil[C]//61st International Astronautical Congress, 2010: 8812-8820.
    [7]
    CESARETTI G, DINI E, DE KESTELIER X, et al.Building components for an outpost on the lunar soil by means of a novel 3D printing technology[J].Acta Astronautica, 2014, 93:430-450. doi: 10.1016/j.actaastro.2013.07.034
    [8]
    BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992
    [9]
    FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326
    [10]
    GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004
    [11]
    GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576
    [12]
    GU D, MEINERS W, WISSENBACH K, et al.Laser additive manufacturing of metallic components:Materials, processes and mechanisms[J].International Materials Reviews, 2012, 57(3):133-164. doi: 10.1179/1743280411Y.0000000014
    [13]
    ZIEGELMEIER S, CHRISTOU P, WOLLECKE F, et al.An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties[J].Journal of Materials Processing Technology, 2015, 215(1):239-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce183528b4274bcf3edafc50d5197fc7
    [14]
    ZOHDI T I.Rapid simulation of laser processing of discrete particulate materials[J].Archives of Computational Methods in Engineering, 2013, 20(4):309-325. doi: 10.1007/s11831-013-9092-6
    [15]
    XIANG Z W, YIN M, DENG Z, et al.Simulation of forming process of powder bed for additive manufacturing[J].Journal of Manufacturing Science and Engineering, 2016, 138(8):081002-1-081002-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe46e3c239e7125b2434a6c71afea2cd
    [16]
    CHEN H, WEI Q, WEN S, et al.Flow behavior of powder particles in layering process of selective laser melting:Numerical modeling and experimental verification based on discrete element method[J].International Journal of Machine Tools and Manufacture, 2017, 123:146-159. doi: 10.1016/j.ijmachtools.2017.08.004
    [17]
    PARTELI E J, POSCHEL T.Particle-based simulation of powder application in additive manufacturing[J].Powder Technology, 2016, 288:96-102. doi: 10.1016/j.powtec.2015.10.035
    [18]
    HAERI S, WANG Y, GHITA O, et al.Discrete element simulation and experimental study of powder spreading process in additive manufacturing[J].Powder Technology, 2017, 306:45-54. doi: 10.1016/j.powtec.2016.11.002
    [19]
    HAERI S.Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations[J].Powder Technology, 2017, 321:94-104. doi: 10.1016/j.powtec.2017.08.011
    [20]
    LI W, HUANG Y, CUI Y, et al.Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion[J].Journal of Terramechanics, 2010, 47(3):161-172. doi: 10.1016/j.jterra.2009.09.002
    [21]
    HUANG Y, LU X, ZHAO R, et al.Three dimensional simulation of lunar dust levitation under the effect of simulated sphere body[J].Journal of Terramechanics, 2011, 48(4):297-306. doi: 10.1016/j.jterra.2011.06.005
    [22]
    HUANG Y, ZHAO R, LI W, et al.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):762-769. http://adsabs.harvard.edu/abs/2013JGRD..11811762H
    [23]
    RENZO A D, MAIO F P.Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J].Chemical Engineering Science, 2004, 59(3):525-541. doi: 10.1016/j.ces.2003.09.037
    [24]
    JOHNSON K L, GREENWOOD J A.An adhesion map for the contact of elastic spheres[J].Journal of Colloid and Interface Science, 1997, 192(2):326-333. doi: 10.1006/jcis.1997.4984
    [25]
    GOTZINGER M, PEUKERT W.Dispersive forces of particle-surface interactions:Direct AFM measurements and modelling[J].Powder Technology, 2003, 130(1-3):102-109. doi: 10.1016/S0032-5910(02)00234-6
    [26]
    ISRAELACHVILI J N.Intermolecular and surface forces[M].2nd ed.Salt Lake City:Academic Press, 1992.
    [27]
    POPEL S I, ZELENYI L M, GOLUB A P, et al.Lunar dust and dusty plasmas:Recent developments, advances, and unsolved problems[J].Planetary and Space Science, 2018, 156:71-84. doi: 10.1016/j.pss.2018.02.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views(536) PDF downloads(197) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return