Volume 46 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
JI Yu, XING Yufeng, SHAO Lihuaet al. Stochastic unit cell model for predicting elastic modulus of nanoporous copper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538(in Chinese)
Citation: JI Yu, XING Yufeng, SHAO Lihuaet al. Stochastic unit cell model for predicting elastic modulus of nanoporous copper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1923-1928. doi: 10.13700/j.bh.1001-5965.2019.0538(in Chinese)

Stochastic unit cell model for predicting elastic modulus of nanoporous copper

doi: 10.13700/j.bh.1001-5965.2019.0538
Funds:

National Natural Science Foundation of China 11672019

More Information
  • Corresponding author: XING Yufeng, E-mail: xingyf@buaa.edu.cn
  • Received Date: 10 Oct 2019
  • Accepted Date: 01 Nov 2019
  • Publish Date: 20 Oct 2020
  • The elastic moduli of nanoporous copper measured through experiment are much lower than the simulated results from molecular dynamics. And the size of actual ligaments is larger than that used in simulation. In this paper, a stochastic unit cell model of nanoporous material is established in software ABAQUS through Python platform. Homogenized elastic parameter was calculated by multiscale homogenization method based on thermal-stress analogy method. First, the elastic modulus of nanoporous gold was predicted by the present unit cell model and compared with the experimental results. The high agreement indicates the effectiveness of the present model. Second, the model was applied to predicting the homogenization elastic modulus of the nanoporous copper under different volume fractions. The threshold phenomenon of the change of the homogenization elastic modulus of the nanoporous copper with volume fractions was revealed and the mechanism of this phenomenon was interpreted physically. Finally, the influencing factors resulting in the difference between the predicted results and the experimental data were analyzed.

     

  • loading
  • [1]
    TANAKA S, MINATO T, ITO E, et al.Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts:Highly efficient synthesis of formamides[J].Chemistry-A European Journal, 2013, 19(36):11832-11836. doi: 10.1002/chem.201302396
    [2]
    HAKAMADA M, MABUCHI M.Mechanical strength of nanoporous gold fabricated by dealloying[J].Scripta Materialia, 2007, 56(11):1003-1006. doi: 10.1016/j.scriptamat.2007.01.046
    [3]
    BIENER J, HODGE A M, HAYES J R, et al.Size effects on the mechanical behavior of nanoporous Au[J].Nano Letters, 2006, 6(10):2379-2382. doi: 10.1021/nl061978i
    [4]
    LI Z Q, LU X, WANG Q, et al.Effect of nanoindentation depth and ligament size on mechanical properties of nanoporous silver[J].Micro & Nano Letters, 2017, 13(4):461-464. http://ieeexplore.ieee.org/document/8332178/
    [5]
    SUN X Y, XU G K, LI X, et al.Mechanical properties and scaling laws of nanoporous gold[J].Journal of Applied Physics, 2013, 113(2):023505. doi: 10.1063/1.4774246
    [6]
    HUBER N, VISWANATH R N, MAMEKA N, et al.Scaling laws of nanoporous metals under uniaxial compression[J].Acta Materialia, 2014, 67(1):252-265. http://www.sciencedirect.com/science/article/pii/S1359645413009385
    [7]
    WANG Y, WANG Y Z, ZHANG C, et al.Tuning the ligament/channel size of nanoporous copper by temperature control[J].CrystEngComm, 2012, 14(24):8352. http://pubs.rsc.org/en/content/articlehtml/2012/ce/c2ce25133g
    [8]
    WANG X Y, LIU S Q, HUANG K L, et al.Effective nanoporous copper for electrocatalytic reduction of carbon dioxide in ionic liquid[J].Functional Materials Letters, 2010, 3(3):181-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1142/S1793604710001202
    [9]
    JI Y, XING Y F, ZHOU F, et al.The mechanical characteristics of monolithic nanoporous copper and its composites[J].Advanced Engineering Materials, 2018, 20(10):1800574. doi: 10.1002/adem.201800574
    [10]
    吴兆虎.纳米多孔铜膜的制备及其力学性能研究[D].西安: 西安理工大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859052.htm

    WU Z H.Preparation and mechanical properties of nanoporous copper film[D].Xi'an: Xi'an University of Technology, 2019(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859052.htm
    [11]
    陈玉洁.纳米多孔铜力学行为的分子动力学模拟研究[D].西安: 西安理工大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859046.htm

    CHEN Y J.Study on mechanical behavior of nanoporous copper based on molecular dynamics[D].Xi'an: Xi'an University of Technology, 2019(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10700-1019859046.htm
    [12]
    YANG Q, LIANG S H, HAN B B, et al.Preparation and properties of enhanced bulk nanoporous coppers[J].Materials Letters, 2012, 73:136-138. doi: 10.1016/j.matlet.2012.01.027
    [13]
    OLEÏNIK O A, SHAMAEV A S, YOSIFIAN G A.Mathematical problems in elasticity and homogenization[M].Amsterdam:Elsevier, 2009.
    [14]
    HASSANI B, HINTON E.A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure[J].Computers & Structures, 1998, 69(6):707-717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2f652b3821cff4735321a20a760bd7a
    [15]
    TAKANO N, ZAKO M, ISHIZONO M.Multi-scale computational method for elastic bodies with global and local heterogeneity[J].Journal of Computer-Aided Materials Design, 2000, 7(2):111. doi: 10.1023/A:1026558222392
    [16]
    CHEN C M, KIKUCHI N, ROSTAM-ABADI F.An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates[J].Computers & Structures, 2004, 82(4-5):373-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=418d8064fc957b4cb8a055b863d9ea1b
    [17]
    XING Y F, GAO Y H, LI M.The multiscale eigenelement method in dynamic analyses of periodical composite structures[J].Composite Structures, 2017, 172:330-338. doi: 10.1016/j.compstruct.2017.03.082
    [18]
    XING Y F, GAO Y H, CHEN L, et al.Solution methods for two key problems in multiscale asymptotic expansion method[J].Composite Structures, 2017, 160:854-866. doi: 10.1016/j.compstruct.2016.10.104
    [19]
    CIORANESCU D, PAULIN J S J.Homogenization in open sets with holes[J].Journal of Mathematical Analysis and Applications, 1979, 71(2):590-607. http://www.ams.org/mathscinet-getitem?mr=548785
    [20]
    YUAN Z, FISH J.Toward realization of computational homogenization in practice[J].International Journal for Numerical Methods in Engineering, 2010, 73(3):361-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/nme.2074
    [21]
    黄富华, 梁军, 杜善义.均匀化方法的ABAQUS实现[J].哈尔滨工业大学学报, 2010, 42(3):389-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201003011

    HUANG F H, LIANG J, DU S Y.Realization of homogenization method with ABAQUS[J].Journal of Harbin Institute of Technology, 2010, 42(3):389-392(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201003011
    [22]
    CHEN Y, PAN F, GUO Z, et al.Stiffness threshold of randomly distributed carbon nanotube networks[J].Journal of the Mechanics and Physics of Solids, 2015, 84:395-423. doi: 10.1016/j.jmps.2015.07.016
    [23]
    HAYES J R, HODGE A M, BIENER J, et al.Monolithic nanoporous copper by dealloying Mn-Cu[J].Journal of Materials Research, 2006, 21(10):2611-2616. doi: 10.1557/jmr.2006.0322
    [24]
    CHEN F, CHEN X, ZOU L, et al.Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu-Al alloys[J].Materials Science and Engineering:A, 2016, 660:241-250. doi: 10.1016/j.msea.2016.02.055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(492) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return