Volume 46 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
SHEN Fuyuan, LI Wei. Quantitative reconfigurability evaluation method of actuator for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568(in Chinese)
Citation: SHEN Fuyuan, LI Wei. Quantitative reconfigurability evaluation method of actuator for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2077-2086. doi: 10.13700/j.bh.1001-5965.2019.0568(in Chinese)

Quantitative reconfigurability evaluation method of actuator for quadrotor UAV

doi: 10.13700/j.bh.1001-5965.2019.0568
Funds:

National Natural Science Foundation of China 61763027

More Information
  • Corresponding author: LI Wei, E-mail: liwei@lut.edu.cn
  • Received Date: 02 Nov 2019
  • Accepted Date: 03 Feb 2020
  • Publish Date: 20 Nov 2020
  • The reconfigurability of system, that is, the ability of autonomous recovery of fault system, has been highly concerned by scholars with the continuous improvement of system security and reliability requirements. However, the existing quantitative evaluation methods for the reconfigurability of control system mainly focus on linear system. Therefore, this paper proposes a quantitative evaluation method of reconfigurability for nonlinear system based on the combination of robust observer of double sliding surfaces and Mahalanobis distance, which chooses the quadrotors Unmanned Aerial Vehicle (quadrotor UAV) with strong coupling, underdrive and strong nonlinearity as the controlled object. Firstly, in order to obtain accurate estimation of system state, a double sliding surface robust observer is designed based on the nonlinear model of quadrotor UAV, which is insensitive to disturbance and failure. Secondly, the similarity method based on Mahalanobis distance is used to quantitatively evaluate the reconfigurability for nonlinear system under the double constraints of actuator saturation and system state error. Finally, the effectiveness of the proposed method is verified by the quadrotor UAV simulation experiment. The results show that the method can truly reflect the system reconfigurability quantification level under different failure levels, which provides an important basis of the control strategy adjustment and compensation for nonlinear fault systems.

     

  • loading
  • [1]
    宿敬亚, 樊鹏辉, 蔡开元.四旋翼飞行器的非线性PID姿态控制[J].北京航空航天大学学报, 2011, 37(9):1054-1058. https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml

    SU J Y, FAN P H, CAI K Y.Attitude control of quadrotor aircraft via nonlinear PID[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1054-1058(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12060.shtml
    [2]
    MOFID O, MOBAYEN S.Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties[J].ISA Transactions, 2018, 72:1-14. doi: 10.1016/j.isatra.2017.11.010
    [3]
    周东华, DING X.容错控制理论及其应用[J].自动化学报, 2000, 26(6):788-797. http://www.cnki.com.cn/Article/CJFDTotal-MOTO200006012.htm

    ZHOU D H, DING X.Theory and application of fault tolerant control[J].Acta Automatica Sinica, 2000, 26(6):788-797(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-MOTO200006012.htm
    [4]
    王宏, 柴天佑, 丁进良, 等.数据驱动的故障诊断与容错控制:进展与可能的新方向[J].自动化学报, 2009, 35(6):739-747. http://d.wanfangdata.com.cn/Periodical_zdhxb200906013.aspx

    WANG H, CHAI T Y, DING J L, et al.Data driven fault diagnosis and fault tolerant control:Some advances and possible new directions[J].Acta Automatica Sinica, 2009, 35(6):739-747(in Chinese). http://d.wanfangdata.com.cn/Periodical_zdhxb200906013.aspx
    [5]
    YIN S, LUO H, DING S X.Real-time implementation of fault-tolerant control systems with performance optimization[J].IEEE Transactions on Industrial Electronics, 2014, 61(5):2402-2411. doi: 10.1109/TIE.2013.2273477
    [6]
    ZHANG Y, JIANG J.Bibliographical review on reconfigurable fault-tolerant control systems[J].Annual Reviews in Control, 2008, 32(2):229-252. doi: 10.1016/j.arcontrol.2008.03.008
    [7]
    李晗, 萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策, 2011, 26(1):1-9. http://d.wanfangdata.com.cn/Periodical/kzyjc201101001

    LI H, XIAO D Y.Survey on data driven fault diadnosis methods[J].Control and Decision, 2011, 26(1):1-9(in Chinese). http://d.wanfangdata.com.cn/Periodical/kzyjc201101001
    [8]
    WANG B, YU X, MU L X, et al.Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J].Mechanical Systems and Signal Processing, 2019, 120:727-743. doi: 10.1016/j.ymssp.2018.11.001
    [9]
    WU N E, ZHOU K, SALOMON G.Control reconfigurability of linear time-invariant systems[J].Automatica, 2000, 36(11):1767-1771. doi: 10.1016/S0005-1098(00)00080-7
    [10]
    MVLLER P C, WEBER H I.Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J].Automatica, 1972, 8(3):237-246. doi: 10.1016/0005-1098(72)90044-1
    [11]
    FREII C W, KRAUS F J, BLANKET M.Recoverability viewed as a system property[C]//European Control Conference, 1999: 2197-2202.
    [12]
    徐赫屿, 王大轶, 李文博.卫星姿态控制系统的可重构性量化评价方法研究[J].航天控制, 2016, 34(4):29-35. http://www.cnki.com.cn/Article/CJFDTotal-HTKZ201604005.htm

    XU H Y, WANG D Y, LI W B.A reconfigurability evaluation method for satellite control system based on Gramian matrix[J].Aerospace Control, 2016, 34(4):29-35(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTKZ201604005.htm
    [13]
    HAMDAN A M A, NAYFEH A H.Measures of modal controllability and observability for first and second order linear systems[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3):421-428. doi: 10.2514/3.20424
    [14]
    SCHMITENDORF W E.An exact expression for computing the degree of controllability[J].Journal of Guidance, Control, and Dynamics, 1984, 7(4):502-504. doi: 10.2514/3.19886
    [15]
    杜光勋, 全权.输入受限系统的可控度及其在飞行控制中的应用[J].系统科学与数学, 2014, 34(12):1578-1594. http://d.wanfangdata.com.cn/Periodical/xtkxysx-zw201412015

    DU G X, QUAN Q.Degree of controllability and its application in aircraft flight control[J].Journal of Systems Science and Mathematical Sciences, 2014, 34(12):1578-1594(in Chinese). http://d.wanfangdata.com.cn/Periodical/xtkxysx-zw201412015
    [16]
    杨荟憭, 姜斌, 张柯.四旋翼直升机姿态系统的直接自修复控制[J].控制理论与应用, 2014, 31(8):1053-1060. http://d.wanfangdata.com.cn/Periodical/kzllyyy201408008

    YANG H L, JIANG B, ZHANG K.Direct self-repairing control for four-rotor helicopter attitude systems[J].Control Theory & Applications, 2014, 31(8):1053-1060(in Chinese). http://d.wanfangdata.com.cn/Periodical/kzllyyy201408008
    [17]
    JIANG Z P, WANG Y.A generalization of the nonlinear small-gain theorem for large-scale complex systems[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation.Piscataway: IEEE Press, 2008: 1188-1193.
    [18]
    ZHAO Y, SONG H, QIU H, et al.Control reconfigurability of nonlinear system based on control redundancy[C]//IEEE 10th International Conference on Industrial Informatics.Piscataway: IEEE Press, 2012: 815-820.
    [19]
    GAO Z W, CECATI C, DING S X.A survey of fault diagnosis and fault-tolerant techniques-Part Ⅱ:Fault diagnosis with knowledge-based and hybrid/active approaches[J].IEEE Transactions on Industrial Electronics, 2015, 62(6):3768-3774. http://ieeexplore.ieee.org/document/7069265/
    [20]
    何静.基于观测器的非线性系统鲁棒故障检测与重构方法研究[D].长沙: 国防科技大学, 2009: 13-21.

    HE J.On observer-based robust fault detection and reconstruction for nonlinear system[D].Changsha: National University of Defense Technology, 2009: 13-21(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(636) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return