The reconfigurability of system, that is, the ability of autonomous recovery of fault system, has been highly concerned by scholars with the continuous improvement of system security and reliability requirements. However, the existing quantitative evaluation methods for the reconfigurability of control system mainly focus on linear system. Therefore, this paper proposes a quantitative evaluation method of reconfigurability for nonlinear system based on the combination of robust observer of double sliding surfaces and Mahalanobis distance, which chooses the quadrotors Unmanned Aerial Vehicle (quadrotor UAV) with strong coupling, underdrive and strong nonlinearity as the controlled object. Firstly, in order to obtain accurate estimation of system state, a double sliding surface robust observer is designed based on the nonlinear model of quadrotor UAV, which is insensitive to disturbance and failure. Secondly, the similarity method based on Mahalanobis distance is used to quantitatively evaluate the reconfigurability for nonlinear system under the double constraints of actuator saturation and system state error. Finally, the effectiveness of the proposed method is verified by the quadrotor UAV simulation experiment. The results show that the method can truly reflect the system reconfigurability quantification level under different failure levels, which provides an important basis of the control strategy adjustment and compensation for nonlinear fault systems.