Volume 46 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
CHENG Yunpeng, SUN Chengzhi, YAN Xiaodonget al. Trajectory prediction of hypersonic glide vehicle based on SVM and EKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050(in Chinese)
Citation: CHENG Yunpeng, SUN Chengzhi, YAN Xiaodonget al. Trajectory prediction of hypersonic glide vehicle based on SVM and EKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050(in Chinese)

Trajectory prediction of hypersonic glide vehicle based on SVM and EKF

doi: 10.13700/j.bh.1001-5965.2020.0050
More Information
  • Corresponding author: YAN Xiaodong, E-mail: yan804@nwpu.edu.cn
  • Received Date: 25 Feb 2020
  • Accepted Date: 30 May 2020
  • Publish Date: 20 Nov 2020
  • In the scenario of intercepting a Hypersonic Glide Vehicle (HGV), the trajectory prediction is a key issue for successful interception. Considering HGV's strong maneuverability and variable trajectory, in this paper, a novel trajectory prediction method is proposed based on Support Vector Machine (SVM) and Extended Kalman Filter (EKF). First, the investigation on the maneuvering mode is performed. The maneuver motion of the HGV is divided into longitudinal mode and lateral mode, which are labeled and formulated into the training set of SVMs. Second, the tracking model of the trajectory for single ground-based radar is established, and EKF is applied to track the glide trajectory of HGV. Finally, the recognition framework of HGV motion is established based on SVM, and the prediction of the subsequent trajectory is accomplished. The results show that the proposed method can improve the trajectory prediction accuracy of HGV.

     

  • loading
  • [1]
    张灿, 林旭斌, 刘都群, 等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹, 2020(1):16-20.

    ZHANG C, LIN X B, LIU D Q, et al.Review of the development of hypersonic vehicle technology in 2019[J].Aerodynamic Missile Journal, 2020(1):16-20(in Chinese).
    [2]
    林旭斌, 李彦, 胡冬冬.美军2019财年高超声速科研预算简析[J].飞航导弹, 2018(6):1-3. http://www.cnki.com.cn/Article/CJFDTotal-FHDD201806004.htm

    LIN X B, LI Y, HU D D.Analysis on the budget of hypersonic scientific research of the US military in 2019[J].Aerodynamic Missile Journal, 2018(6):1-3(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHDD201806004.htm
    [3]
    LI G H, ZHANG H B, TANG G J.Maneuver characteristics analysis for hypersonic glide vehicles[J].Aerospace Science and Technology, 2015, 43:321-328. doi: 10.1016/j.ast.2015.03.016
    [4]
    ZARCHAN P.Tactical and strategic missile guidance[M].Reston:AIAA, 2012.
    [5]
    QIN L, LI J L, ZHOU D.Tracking filter and prediction for non-ballistic target HTV-2 in near space[C]//27th Chinese Control and Decision Conference.Piscataway: IEEE Press, 2015: 3556-3561.
    [6]
    KIM K, HWANG I.Intent-based detection and characterization of aircraft maneuvers in en route airspace[J].Journal of Aerospace Information Systems, 2018, 15(2):72-91. doi: 10.2514/1.I010566
    [7]
    张洪波, 黄景帅, 李广华, 等.典型控制规律滑翔飞行器的轨迹预测方法[J].现代防御技术, 2017, 45(4):112-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201704019.htm

    ZHANG H B, HUANG J S, LI G H, et al.Trajectory prediction of glide vehicle based on typical control law[J].Modern Defence Technology, 2017, 45(4):112-118(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201704019.htm
    [8]
    VAPNIK N.The nature of statistical learning theory[M].Berlin:Springer, 1995.
    [9]
    BERNHARD S.Advances in kernel methods:Support vector learning[M].Cambridge:MIT Press, 1999.
    [10]
    于震梁, 孙志礼, 曹汝男, 等.基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J].兵工学报, 2018, 39(5):991-997. http://www.cnki.com.cn/Article/CJFDTotal-BIGO201805020.htm

    YU Z L, SUN Z L, CAO R N, et al.Research on remaining useful life predictive model of machine parts based on SVM and Kalman filter[J].Acta Armamentarii, 2018, 39(5):991-997(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BIGO201805020.htm
    [11]
    陈旭梅, 龚辉波, 王景楠.基于SVM和Kalman滤波的BRT行程时间预测模型研究[J].交通运输系统工程与信息, 2012, 12(4):29-34. http://d.wanfangdata.com.cn/Periodical/jtysxtgcyxx201204005

    CHEN X M, GONG H B, WANG J N.BRT vehicle travel time prediction based on SVM and Kalman filter[J].Journal of Transportation Systems Engineering and Information Technology, 2012, 12(4):29-34(in Chinese). http://d.wanfangdata.com.cn/Periodical/jtysxtgcyxx201204005
    [12]
    杨茂, 黄宾阳, 江博, 等.基于卡尔曼滤波和支持向量机的风电功率实时预测研究[J].东北电力大学学报, 2017, 37(2):45-51. http://www.cnki.com.cn/Article/CJFDTotal-DBDL201702008.htm

    YANG M, HUANG B Y, JIANG B, et al.Real-time prediction for wind power based on Kalman filter and support vector machines[J].Journal of Northeast Electric Power University, 2017, 37(2):45-51(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DBDL201702008.htm
    [13]
    PENG H, BAI X L.Exploring capability of support vector machine for improving satellite orbit prediction accuracy[J].Journal of Aerospace Information Systems, 2018, 15(6):366-381. doi: 10.2514/1.I010616
    [14]
    VINH N X.Optimal trajectories in atmospheric flight[M].London:Pergamon Press Ltd., 1982:449-468.
    [15]
    赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社, 1997.

    ZHAO H Y.Reentry dynamics and guidance of aircraft[M].Changsha:University of National Defense Science and Technology Press, 1997(in Chinese).
    [16]
    LI G H, ZHANG H B, TANG G J, et al.Maneuver modes analysis for hypersonic glide vehicles[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.Piscataway: IEEE Press, 2014: 543-548.
    [17]
    ZHU J W, LIU L H, TANG G J, et al.Highly constrained optimal gliding guidance[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2321-2335. doi: 10.1177/0954410015573973
    [18]
    李凡, 熊家军, 张凯, 等.临近空间高超声速目标跟踪动力学模型[J].宇航学报, 2019, 40(3):266-276. http://www.cnki.com.cn/Article/CJFDTotal-YHXB201903004.htm

    LI F, XIONG J J, ZHANG K, et al.Near space hypersonic target dynamics tracking model[J].Journal of Astronautics, 2019, 40(3):266-276(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YHXB201903004.htm
    [19]
    谢愈, 刘鲁华, 汤国建, 等.高超声速滑翔飞行器摆动式机动突防弹道设计[J].航空学报, 2011, 32(12):2174-2181. http://www.cqvip.com/QK/91925X/201112/40162349.html

    XIE Y, LIU L H, TANG G J, et al.Weaving maneuver trajectory design for hypersonic glide vehicle[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2174-2181(in Chinese). http://www.cqvip.com/QK/91925X/201112/40162349.html
    [20]
    王丹.基于运动行为识别的高超声速目标弹道估计[D].哈尔滨: 哈尔滨工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863950.htm

    WANG D.Trajectory estimation of hypersonic target based on motion behavior recognition[D].Harbin: Harbin Institute of Technology, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863950.htm
    [21]
    HOUGH M E.Reentry maneuver estimation using nonlinear Markov acceleration models[J].Journal of Guidance, Control, and Dynamics, 2017, 40(7):1693-1710. doi: 10.2514/1.G002577
    [22]
    张凯, 熊家军, 韩春耀, 等.一种基于气动力模型的高超声速滑翔目标跟踪算法[J].宇航学报, 2017, 38(2):123-130. http://www.cnki.com.cn/Article/CJFDTotal-YHXB201702003.htm

    ZHANG K, XIONG J J, HAN C Y, et al.A tracking algorithm of hypersonic glide reentry vehicle via aerodynamic model[J].Journal of Astronautics, 2017, 38(2):123-130(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YHXB201702003.htm
    [23]
    SINGER R A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4):473-483. doi: 10.1109/TAES.1970.310128
    [24]
    ZHU J W, HE R Z, TANG G J, et al.Pendulum maneuvering strategy for hypersonic glide vehicles[J].Aerospace Science and Technology, 2018, 78:62-70. doi: 10.1016/j.ast.2018.03.038
    [25]
    HOU Q L, ZHANG J X, LIU L M, et al.Discriminative information-based nonparallel support vector machine[J].Signal Processing, 2019, 162:169-179. doi: 10.1016/j.sigpro.2019.03.026
    [26]
    CHANG M, LIN C.Leave-one-out bounds for support vector regression model selection[J].Neural Computation, 2005, 17(5):1188-1222. doi: 10.1162/0899766053491869
    [27]
    CHANG C, LIN C.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27.
    [28]
    KJELDSEN H T.A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming:The impact of World War Ⅱ[J].Historia Mathematica, 2000, 27(4):331-361. doi: 10.1006/hmat.2000.2289
    [29]
    CHEN K L, YU J.Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach[J].Applied Energy, 2014, 113:690-705. doi: 10.1016/j.apenergy.2013.08.025
    [30]
    张强, 肖刚, 蓝屹群.基于BP神经网络多类分类的湍流目标探测[J].系统工程与电子技术, 2018, 40(7):1486-1490. http://www.cnki.com.cn/Article/CJFDTotal-XTYD201807011.htm

    ZHANG Q, XIAO G, LAN Y Q.Turbulence target detection based on BP neural network multi-level classification[J].Systems Engineering and Elctronics, 2018, 40(7):1486-1490(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XTYD201807011.htm
    [31]
    何伟.基于朴素贝叶斯的文本分类算法研究[D].南京: 南京邮电大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10293-1019690701.htm

    HE W.Text classification algorithm research based on naive Bayes[D].Nanjing: Nanjing University of Posts and Telecommunications, 2018(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10293-1019690701.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(642) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return