Volume 46 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
LI Jiwei, LU Pan, WANG Qiu, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577(in Chinese)
Citation: LI Jiwei, LU Pan, WANG Qiu, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577(in Chinese)

Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel

doi: 10.13700/j.bh.1001-5965.2019.0577
Funds:

National Natural Science Foundation of China 11402275

National Natural Science Foundation of China 11727901

National Key R & D Program of China 2016YFA0401201

More Information
  • Corresponding author: WANG Qiu, E-mail: wangqiu@imech.ac.cn
  • Received Date: 11 Nov 2019
  • Accepted Date: 22 Dec 2019
  • Publish Date: 20 Nov 2020
  • Hypersonic boundary layer transition has an important influence on friction drag and heat transfer, and thus accurate prediction and control of boundary layer transition are critical to the development of hypersonic vehicles. In this paper, experimental study on a 7° half-angle sharp cone was conducted in the JF8A shock tunnel to investigate the hypersonic boundary layer transition. The wall fluctuation pressure was measured by the pressure transducer with the response frequency as high as 1 MHz, and the development process of the disturbance wave in hypersonic sharp cone boundary layer was also investigated together with the results of heat flux measurement. The experimental results show that the pressure fluctuation in the free flow is 2.8% under the test condition of Reynolds number equals to 6.4×106/m. Structures and development of the second mode waves in the process of transition can be obtained by the high-frequency fluctuation pressure measurement technique. The characteristic frequency of the second mode wave changes from 165 kHz to 206 kHz under the present test condition. The current research results can provide data support for hypersonic numerical method validation.

     

  • loading
  • [1]
    CASPER K M, BERESH S J, SCHNEIDER S P. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer[J].Journal of Fluid Mechanics, 2014, 756:1058-1091. doi: 10.1017/jfm.2014.475
    [2]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201703001.htm

    CHEN J Q, TU G H, ZHANG Y F, et al.Hypersonic boundary layer transition:What we know, where shall we go[J].Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KQDX201703001.htm
    [3]
    解少飞, 杨武兵, 沈清.高超声速边界层转捩及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. http://d.wanfangdata.com.cn/Periodical/hkxb201503002

    XIE S F, YANG W B, SHEN Q.Review of progresses in hypersonic boundary layer transition mechanism and its applications[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201503002
    [4]
    宋博, 李椿萱.高超声速尖锥边界层转捩数值模拟[J].北京航空航天大学学报, 2012, 38(7):877-881. https://bhxb.buaa.edu.cn/CN/abstract/abstract12329.shtml

    SONG B, LI C X.Hypersonic boundary layer transition prediction based on laminar fluctuation energy transport equation[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):877-881(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12329.shtml
    [5]
    MACK L M.Boundary-layer linear stability theory: AGARD Report No.709[R].[S.l.]: AGARD, 1984.
    [6]
    江贤洋, 李存标.高超声速边界层感受性研究综述[J].实验流体力学, 2017, 31(2):1-11. http://www.cqvip.com/QK/90272X/201702/672100537.html

    JIANG X Y, LI C B.Review of research on the receptivity of hypersonic boundary layer[J].Journal of Experiments in Fluid Mechanics, 2017, 31(2):1-11(in Chinese). http://www.cqvip.com/QK/90272X/201702/672100537.html
    [7]
    SCHNEIDER S P.Flight data for boundary-layer transition at hypersonic and supersonic speeds[J].Journal of Spacecraft and Rockets, 2011, 36(1):8-20. doi: 10.2514/2.3428
    [8]
    LI X L, FU D X, MA Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J].Physics of Fluids, 2010, 22:025105. doi: 10.1063/1.3313933
    [9]
    ZHONG X L.High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J].Journal of Computational Physics, 1998, 144(2):662-709. doi: 10.1006/jcph.1998.6010
    [10]
    FEDOROV A.Transition and stability of high-speed boundary layers[J].Annual Review of Fluid Mechanics, 2011, 43:79-95. doi: 10.1146/annurev-fluid-122109-160750
    [11]
    ZHANG C H, TANG Q, LEE C B.Hypersonic boundary-layer transition on a flared cone[J].Acta Mechanica Sinica, 2013, 29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [12]
    ZHU Y D, ZHANG C H, CHEN X, et al.Transition in hypersonic boundary layers:Role of dilatational waves[J].AIAA Journal, 2016, 54(10):3039-3049. doi: 10.2514/1.J054702
    [13]
    ZHANG C H, LEE C B.Rayleigh-scattering visualization of the development of second-mode waves[J].Journal of Visualization, 2016, 20(1):1-6. http://smartsearch.nstl.gov.cn/paper_detail.html?id=5a3539a380c4fa774c1e2d4be9459e54
    [14]
    刘小林, 易仕和, 牛海波, 等.高超声速条件下7°直圆锥边界层转捩实验研究[J].物理学报, 2018, 67(17):174701. http://www.cqvip.com/QK/94684X/201817/676270789.html

    LIU X L, YI S H, NIU H B, et al.Experimental investigation of the hypersonic boundary layer transition on a 7°straight cone[J].Acta Physica Sinica, 2018, 67(17):174701(in Chinese). http://www.cqvip.com/QK/94684X/201817/676270789.html
    [15]
    何霖, 易仕和, 陆小革.超声速湍流边界层密度场特性[J].物理学报, 2017, 66(2):024701. http://www.cqvip.com/QK/94684X/20172/671247900.html

    HE L, YI S H, LU X G.Experimental study on the density characteristics of a supersonic turbulent boundary layer[J].Acta Physica Sinica, 2017, 66(2):024701(in Chinese). http://www.cqvip.com/QK/94684X/20172/671247900.html
    [16]
    KENDALL J M.Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition[J].AIAA Journal, 1974, 13(3):290-299. doi: 10.2514/3.49694
    [17]
    GROSSIR G, MASUTTI D, CHAZOT O.Flow characterization and boundary layer transition studies in VKI hypersonic facilities: AIAA-2015-0578[R].Reston: AIAA, 2015.
    [18]
    RUFER S J, BERRIDGE D C.Pressure fluctuation measurements in the NASA Langley 20-inch Mach 6 wind tunnel: AIAA-2012-3262[R].Reston: AIAA, 2012.
    [19]
    CHYNOWETH B C, WARD C, GREEWOOD R T, et al.Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel: AIAA-2014-2643[R].Reston: AIAA, 2014.
    [20]
    FUJII K.Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [21]
    HEITMANN D, RADESPIEL R, KÄHLER C.Investigation of the response of a hypersonic 2D boundary layer to controlled acoustic disturbances[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2013: 23-28.
    [22]
    张骞, 陈连忠, 艾邦成.电弧加热流场湍流度对尖锥边界层转捩影响的研究[J].实验流体力学, 2010, 24(6):57-60. http://www.cnki.com.cn/Article/CJFDTotal-LTLC201006012.htm

    ZHANG Q, CHEN L Z, AI B C.Sharp cone boundary layer transition research in arc heated flow field influenced by turbulence[J].Journal of Experiments in Fluid Mechanics, 2010, 24(6):57-60(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-LTLC201006012.htm
    [23]
    纪锋, 解少飞, 沈清.高超声速1 MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. http://d.wanfangdata.com.cn/Periodical/kqdlxxb201605007

    JI F, XIE S F, SHEN Q.Hypersonic high frequency (1 MHz) fluctuation pressure testing technology and application[J].Acta aerodynamica Sinica, 2016, 34(5):587-591(in Chinese). http://d.wanfangdata.com.cn/Periodical/kqdlxxb201605007
    [24]
    李强, 江涛, 陈苏宇, 等.激波风洞边界层转捩测量技术及应用[J].航空学报, 2019, 40(7):122740. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201908005.htm

    LI Q, JIANG T, CHEN S Y, et al.Measurement technique and application of boundary layer transition in shock tunnel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122740(in chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201908005.htm
    [25]
    韩健.高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D].天津: 天津大学, 2010.

    HAN J.Wavelet analysis and cross bispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D].Tianjin: Tianjin University, 2010(in Chinese).
    [26]
    李悦雷.基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D].天津: 天津大学, 2007.

    LI Y L.Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D].Tianjin: Tianjin University, 2007(in Chinese).
    [27]
    KEGERISE M A, RUFER S J.Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer[J].Experiments in Fluids, 2016, 57:130. doi: 10.1007/s00348-016-2214-9
    [28]
    RODIGER T.The atomic layer thermopile-A new heat-transfer measurement technique in fluid mechanics and thermodynamics[D].Stuttgart: Institute of Aerodynamics and Gas Dynamics University of Stuttgart, 2010.
    [29]
    SCHULTZ D L, JONES T V.Heat transfer measurements in short duration hypersonic facilities: AGARD-AG-165[R].[S.l.]: AGARD, 1973.
    [30]
    GERMAIN P, CUMMINGS E, HORNUNG H.Transition on a sharp cone at high enthalpy: New measurements in the shock tunnel T5: AIAA-1993-0343[R].Reston: AIAA, 1993.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(505) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return