Volume 46 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
MENG Qingliang, YANG Tao, YU Zhi, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584(in Chinese)
Citation: MENG Qingliang, YANG Tao, YU Zhi, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584(in Chinese)

Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor

doi: 10.13700/j.bh.1001-5965.2019.0584
Funds:

National Natural Science Foundation of China 51806010

More Information
  • Corresponding author: MENG Qingliang, E-mail: qlmeng@mail.ustc.edu.cn
  • Received Date: 14 Nov 2019
  • Accepted Date: 22 Dec 2019
  • Publish Date: 20 Nov 2020
  • For the purpose of meeting the requirement of application on-orbit for Loop Heat Pipe (LHP), a transient numerical model of LHP, which is used for the thermal control of Charge-Coupled Device (CCD) of GF-9 satellite, is developed by using the node-network method and flow and heat transfer relation formula. The processes of heat and mass transfer between evaporator and accumulator are considered. By comparison between simulation and on-orbit results, it is found that the temperature differences are 0.2-0.4℃ and 0.5-2.0℃, for the interior components and condensers, respectively. The influence of orbital external heat flux and working mode of heat source can be adjusted by the degree of dryness in the pre-heater. The heat leak from evaporator to accumulator, flow resistance of loop, and the length of two-phase loop can be affected by the working mode of heat sources. The model can be used to study the variation of LHP interior parameters under different orbital external heat flux and heat source working modes, and predict the transient behavior of LHP system, which can also be used to guide the design and development of subsequent products.

     

  • loading
  • [1]
    HOLST G C.CCD arrays, cameras, and displays[M].Bellingham:SPIE, 1996.
    [2]
    鲁盼, 赵振明, 颜吟雪.高分辨率遥感相机CCD器件精密热控制[J].航天返回与遥感, 2014, 35(4):59-66. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201404009.htm

    LU P, ZHAO Z M, YAN Y X.Precise thermal control of CCD in high resolution remote sensing[J].Spacecraft Recovery & Remote Sensing, 2014, 35(4):59-66(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201404009.htm
    [3]
    童叶龙, 李国强, 余雷, 等.CCD组件的热分析和热实验[J].航天返回与遥感, 2014, 35(5):46-53. http://www.cnki.com.cn/Article/CJFDTotal-HFYG200303003.htm

    TONG Y L, LI G Q, YU L, et al.Heat dissipation and precise temperature control for high-power CCD assembly[J].Spacecraft Recovery & Remote Sensing, 2014, 35(5):46-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG200303003.htm
    [4]
    李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870.

    LI C L.Research on space optical remote sensor thermal control technique[J].Journal of Astronautics, 2014, 35(8):863-870(in Chinese).
    [5]
    苗建印, 张红星, 吕巍, 等.航天器热传输技术研究进展[J].航天器工程, 2010, 19(2):106-112. http://www.cnki.com.cn/Article/CJFDTotal-HTGC201002015.htm

    MIAO J Y, ZHANG H X, LV W, et al.Development of heat transfer technologies for spacecraft[J].Spacecraft Engineering, 2010, 19(2):106-112(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGC201002015.htm
    [6]
    张畅, 谢荣建, 张添, 等.液氮温区平板蒸发器环路热管实验研究[J].北京航空航天大学学报, 2019, 45(6):1211-1217. doi: 10.13700/j.bh.1001-5965.2018.0623

    ZHANG C, XIE R J, ZHANG T, et al.Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1211-1217(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0623
    [7]
    赵振明, 孟庆亮, 张焕冬, 等.CCD器件用机械泵驱动两相流体回路仿真与实验[J].北京航空航天大学学报, 2019, 45(5):893-901. doi: 10.13700/j.bh.1001-5965.2018.0519

    ZHAO Z M, MENG Q L, ZHANG H D, et al.Simulation and experimental study of mechanically pumped two-phase loop for CCD[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):893-901(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0519
    [8]
    GAO T, YANG T, ZHAO S L, et al.The design and application of temperature control loop heat pipe for space CCD camera[C]//46th International Symposium of Space Optical Instrument and Application, 2017: 15-20.
    [9]
    CHUANG P.An improved steady-state model of loop heat pipes based on experimental and theoretical analyses[D].State College: Pennsylvania State University, 2003.
    [10]
    KAYA T, PÉREZ R, GREGORI C, et al.Numerical simulation of transient operation of loop heat pipes[J].Applied Thermal Engineering, 2008, 28(8-9):967-974. doi: 10.1016/j.applthermaleng.2007.06.037
    [11]
    ADONI A, AMBIRAJAN A, JASVANTH V, et al.Thermohydraulic modeling of capillary pumped loop and loop heat pipe[J].Journal of Thermophysics and Heat Transfer, 2007, 21(2):410-421.
    [12]
    BAI L, LIN G P, ZHANG H X, et al.Mathematical modeling of steady-state operation of a loop heat pipe[J].Applied Thermal Engineering, 2009, 29(13):2643-2654. doi: 10.1016/j.applthermaleng.2008.12.040
    [13]
    RIVIÉRE N, SARTRE V, BONJOUR J.Fluid mass distribution in a loop heat pipe with flat evaporator[C]//15th International Heat Pipe Conference, 2010: hal-00541426.
    [14]
    WRENN K R, ALLEN R D, HOANG T T, et al.Verification of a transient loop heat pipe model: 1999-01-2010[R].Warrendale: SAE Technical Paper, 1999.
    [15]
    HOANG T, KU J.Transient modeling of loop heat pipes: AIAA-2003-6082[R].Reston: AIAA, 2003.
    [16]
    POUZET E, JOLY J L, PLATEL V, et al.Dynamic response of a capillary pumped loop subjected to various heat load transients[J].International Journal of Heat and Mass Transfer, 2004, 47(10-11):2293-2316. doi: 10.1016/j.ijheatmasstransfer.2003.11.003
    [17]
    CULLIMORE B, BAUMANN J.Steady state and transient loop heat pipe modeling: 2000-01-2316[R].Warrendale: SAE Technical Paper, 2000.
    [18]
    ZINNA S, MARENGO M, MOLINA M.Numerical model of the LHP for the thermal control of the cryomagnet avionic box (CAB) mounted on the AMS-02 experiment[C]//Ⅶ Minsk International Seminar "Heat pipes, Heat pumps, Refrigerators, Power Sources", 2008: 351-359.
    [19]
    XIN G, CHENG Y, LUAN T, et al.Simulation of a LHP-based thermal control system under orbital environment[J].Applied Thermal Engineering, 2009, 29(13):2726-2730. doi: 10.1016/j.applthermaleng.2009.01.011
    [20]
    何发龙, 杜王芳, 赵建福, 等.深冷环路热管瞬态数值仿真研究[J].载人航天, 2018, 24(4):515-519. http://www.cnki.com.cn/Article/CJFDTotal-ZRHT201804014.htm

    HE F L, DU W F, ZHAO J F, et al.Study on transient numerical simulation of cryogenic loop heat pipe[J].Manned Spaceflight, 2018, 24(4):515-519(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZRHT201804014.htm
    [21]
    KU J T.Operating characteristics of loop heat pipe[C]//29th International Conference on Environmental System, 1999: 1991-01-2007.
    [22]
    弗兰克P·英克鲁佩勒, 大卫P·德维特, 狄奥多尔L·伯格曼, 等.传热和传质基本原理[M].葛新石, 叶宏, 译.北京: 化学工业出版社, 2011: 297-332.

    INCROPERA F P, DEWITT D P, BERGMAN T L, et al.Fundamentals of heat and mass transfer[M].GE X S, YE H, translated.Beijing: Chemical Industry Press, 2011: 297-332(in Chinese).
    [23]
    SHAH M M.Prediction of heat transfer during boiling of cryogenics fluids flowing in tubes[J].Cryogenics, 1984, 24(5):231-236.
    [24]
    CHURCHILL S W.Friction factor equation spans all fluid-flow regimes[J].Chemical Engineering Journal, 1977, 84(24):91-92.
    [25]
    FRIEDEL L.Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow[C]//European Two-Phase Flow Group Meeting, 1979: 485-492.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(545) PDF downloads(212) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return