Volume 46 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
SHEN Chunmei, YU Feng, LIU Wenkaiet al. Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138(in Chinese)
Citation: SHEN Chunmei, YU Feng, LIU Wenkaiet al. Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2026-2038. doi: 10.13700/j.bh.1001-5965.2020.0138(in Chinese)

Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite

doi: 10.13700/j.bh.1001-5965.2020.0138
More Information
  • Corresponding author: SHEN Chunmei, E-mail: 123855964@qq.com
  • Received Date: 13 Apr 2020
  • Accepted Date: 25 May 2020
  • Publish Date: 20 Nov 2020
  • The structure layout of hyperspectral greenhouse gas monitor on FY-3D satellite is very compact. There are eight optical lens, twelve electronic devices and three motors in the small-scale space. There are so many optical lens with high-precision temperature control requirement and so many heat source equipment. And thermal control resources such as heating power and radiator layout space are limited. These above characteristics make thermal control system design of hyperspectral greenhouse gas monitor a challenge. Thermal control system was designed based on multiple design methods including thermal management, indirect radiation thermal control, radiation cooling and collaborative optimization design of integrated structural and thermal control. Thermal control difficult problems were solved effectively. Hyperspectral greenhouse gas monitor experienced multiple operating modes after entering orbit. On-orbit temperature data show that all components' temperatures meet the requirements, and optical lens have high temperature stability under all the experienced operating modes. The maximum temperature fluctuation of interferometer is within ±0.15℃ under normal operating mode, and it is within ±0.45℃ for other optical lens. Furthermore, no matter under standby mode in a whole orbit period or normal operating mode, the heat dissipation systems of two sets of electronic device designed based on thermal management do not need to consume thermal control power resources. High-precision thermal control and energy saving thermal design are realized under the condition of multiple heat sources and complex working mechanism.

     

  • loading
  • [1]
    闵桂荣.卫星热控制技术[M].北京:中国宇航出版社, 1991:8-11.

    MIN G R.Satellite thermal control technology[M].Beijing:China Astronautic Publishing House, 1991:8-11(in Chinese).
    [2]
    DAVID G.Spacecraft thermal control handbook.Volume Ⅰ:Fundamental technologies[M].EI Segundo:The Aerospace Press, 2002:21-67.
    [3]
    李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870.

    LI C L.Research on space optical remote sensor thermal control technique[J].Journal of Astronautics, 2014, 35(8):863-870(in Chinese).
    [4]
    赵振明, 鲁盼, 宋欣阳."高分二号"卫星相机热控系统的设计与验证[J].航天返回与遥感, 2015, 36(4):34-40. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201504010.htm

    ZHAO Z M, LU P, SONG X Y.Themal design and test for high resolution space space optical camera on GF-2 satellite[J].Spacecraft Recovery & Remote Sensing, 2015, 36(4):34-40(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201504010.htm
    [5]
    于峰, 徐娜娜, 赵宇, 等."高分四号"卫星相机热控系统设计及验证[J].航天返回与遥感, 2016, 37(4):72-79. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201604010.htm

    YU F, XU N N, ZHAO Y, et al.Thermal design and test for space optical camera on GF-4 satellite[J].Spacecraft Recovery & Remote Sensing, 2016, 37(4):72-79(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201604010.htm
    [6]
    陈维春, 王海星.大型三反离轴相机热控设计及在轨飞行验证[J].光学仪器, 2015, 37(2):116-131. http://www.cnki.com.cn/Article/CJFDTotal-GXYQ201502006.htm

    CHEN W C, WANG H X.Verification of thermal design and in-orbit flight for large off-axis triple-mirror anastigmatic space optical camera[J].Optical Instruments, 2015, 37(2):116-131(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GXYQ201502006.htm
    [7]
    张月, 王超, 苏云, 等.地球静止轨道甚高分辨率成像系统热控方案[J].红外与激光工程, 2014, 43(9):3116-3121. http://www.cnki.com.cn/Article/CJFDTotal-HWYJ201409059.htm

    ZHANG Y, WANG C, SU Y, et al.Thermal control scheme for ultrahigh resolution imaging system on geosynchronous orbit[J].Infrared and Laser Engineering, 2014, 43(9):3116-3121(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HWYJ201409059.htm
    [8]
    LIU W Y, DING Y L, WU Q W, et al.Thermal analysis and design of the aerial space optical camera's primary optical system components[J].Applied Thermal Engineering, 2012, 38(4):40-47.
    [9]
    王兵, 李春林, 阳明.空间相机热管理技术[C]//第二十三届全国空间探测学术交流会, 2010: 1-5.

    WANG B, LI C L, YANG M.Thermal management technique of space camera[C]//The 23th National Space Detection Academic Conference, 2010: 1-5(in Chinese).
    [10]
    范含林.载人航天器热管理技术发展综述[J].航天器工程, 2007, 16(1):28-32. http://www.cqvip.com/Main/Detail.aspx?id=23770164

    FAN H L.Manned spacecraft thermal management technologies development overview[J].Spacecraft Engineering, 2007, 16(1):28-32(in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=23770164
    [11]
    徐小平, 李劲东, 范含林.大型航天器热管理系统集成分析[J].中国空间科学技术, 2004, 24(6):11-17.

    XU X P, LI J D, FAN H L.Integrated analysis of thermal management system in large spacecraft[J].Chinese Space Science and Technology, 2004, 24(6):11-17(in Chinese).
    [12]
    申春梅, 李春林, 高长春.某空间光谱仪热管理初析[J].航天返回与遥感, 2012, 33(6):80-85. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201206018.htm

    SHEN C M, LI C L, GAO C C.Thermal management of calorigenic eqiupments in space spectral imager[J].Spacecraft Recovery & Remote Sensing, 2012, 33(6):80-85(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201206018.htm
    [13]
    郭亮, 吴清文, 黄勇, 等.热管理技术在紫外成像光谱仪热控制中的应用[J].光学精密工程, 2014, 22(7):1877-1885. http://www.cnki.com.cn/Article/CJFDTotal-GXJM201407025.htm

    GUO L, WU Q W, HUANG Y, et al.Application of thermal management technique to thermal control for ultraviolet imaging spectrometers[J].Optics and Precision Engineering, 2014, 22(7):1877-1885(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GXJM201407025.htm
    [14]
    宋欣阳, 高娟, 赵振明, 等.间接热控在高分辨率光学遥感器恒温控制中的应用[J].航天返回与遥感, 2015, 36(2):46-52. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201502009.htm

    SONG X Y, GAO J, ZHAO Z M, et al.Application of indirect thermal control technology for constant temperature control of HR optical remote sensor[J].Spacecraft Recovery & Remote Sensing, 2015, 36(2):46-52(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201502009.htm
    [15]
    SHEN C M, LIU W K.Integrated thermal design of one space optical remaote sensor[C]//4th International Symposium of Space Optical Instruments and Applications, 2017: 75-83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views(557) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return