Volume 46 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
CHENG Xuan, XIAO Cunying, YANG Junfeng, et al. A modeling method and its application of global atmospheric density in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2227-2235. doi: 10.13700/j.bh.1001-5965.2019.0614(in Chinese)
Citation: CHENG Xuan, XIAO Cunying, YANG Junfeng, et al. A modeling method and its application of global atmospheric density in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2227-2235. doi: 10.13700/j.bh.1001-5965.2019.0614(in Chinese)

A modeling method and its application of global atmospheric density in near space

doi: 10.13700/j.bh.1001-5965.2019.0614
Funds:

Strategic Priority Research Program of the Chinese Academy of Sciences XDA17010301

National Natural Science Foundation of China 11872128

National Natural Science Foundation of China 91952111

Youth Science and Technology Innovation Foundation of NSSC Y9211FAF3S

More Information
  • Corresponding author: XIAO Cunying, E-mail: xiaocunying@bnu.edu.cn
  • Received Date: 05 Dec 2019
  • Accepted Date: 26 Mar 2020
  • Publish Date: 20 Dec 2020
  • Based on the 20-100 km atmospheric density data observed by TIMED/SABER satellite from year 2002 to 2018, the global grid data of monthly average and standard deviation are calculated statistically. Based on the grid data, the characteristics of atmospheric density variation are analyzed. The relative errors of USSA76 are calculated and the distribution characteristics of relative errors of USSA76 are analyzed. In addition, driven by the grid data, the atmospheric density is characterized as the sum of the monthly average and the large-scale disturbances and small-scale disturbances. The large-scale perturbations and small-scale perturbations are characterized by cosine functions and first-order autoregressive models, respectively. And a global near-space atmospheric density model is initially established. By comparing the simulated values of the model with the observed values of the lidar, the results show that the model values have a good agreement with the observed values, which verifies that the modeling method is feasible. Finally, Monte Carlo method can be used to reproduce all possible states of atmospheric density on a given trajectory.

     

  • loading
  • [1]
    陈闽慷, 杜涛, 胡雄, 等.北半球高空大气参数波动对临近空间飞行热环境的影响[J].科学通报, 2017, 62(13):1402-1409. http://www.cqvip.com/QK/94252X/201713/672105318.html

    CHEN M K, DU T, HU X, et al.Effect of atmosphere parameter oscillation at high altitude in the northern hemisphere for near space hypersonic flight aerothermodynamic prediction[J].Chinese Science Bulletin, 2017, 62(13):1402-1409(in Chinese). http://www.cqvip.com/QK/94252X/201713/672105318.html
    [2]
    李健, 侯中喜, 刘新建, 等.基于扰动大气模型的乘波构型飞行器再入弹道仿真[J].系统仿真学报, 2007, 19(4):3283-3285. http://www.cnki.com.cn/Article/CJFDTotal-XTFZ200714039.htm

    LI J, HOU Z X, LIU X J, et al.Reentry trajectories simulations for waverider configuration hypersonic vehicle based on perturbation atmosphere model[J].Journal of System Simulation, 2007, 19(4):3283-3285(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XTFZ200714039.htm
    [3]
    黄华, 徐幼平, 邓志武.靶区大气环境对再入体落点精度影响仿真研究[J].系统仿真学报, 2009, 21(13):3910-3913.

    HUANG H, XU Y P, DENG Z W.Simulation of influence of range atmospere on RV placement accuracy[J].Journal of System Simulation, 2009, 21(13):3910-3913(in Chinese).
    [4]
    叶友达, 张涵信, 蒋勤学, 等.近空间高超声速飞行器气动特性研究的若干关键问题[J].力学学报, 2018, 50(6):1292-1310. http://www.cnki.com.cn/Article/CJFDTotal-LXXB201806004.htm

    YE Y D, ZHANG H X, JIANG Q X, et al.Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J].Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1292-1310(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-LXXB201806004.htm
    [5]
    COESA. U.S.standard atmosphere(1976)[S].Washington, D.C.: U.S.Government Printing Office, 1976.
    [6]
    CIRA Working Group, REES D.COSPAR international reference atmosphere:Thermosphere (1986)[J].Planetary and Space Science, 1992, 40(4):555. https://ui.adsabs.harvard.edu/abs/1992P&SS...40..555R/abstract
    [7]
    HEDIN A E.Msis-86 thermospheric model[J].Journal of Geophysical Research-Space Physics, 1987, 92(A5):4649-4662. doi: 10.1029/JA092iA05p04649/abstract
    [8]
    PICONE J M, HEDIN A E, DROB D P, et al.NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J].Journal of Geophysical Research-Space Physics, 2002, 107(A12):15-16. doi: 10.1029/2002ja009430
    [9]
    DROB D, EMMERT J, CROWLEY G, et al.An empirical model of the Earth's horizontal wind fields:HWM07[J].Journal of Geophysical Research-Space Physics, 2008, 113(A12):A12304. doi: 10.1029/2008JA013668/full
    [10]
    JUSTUS C G, JEFFRIES Ⅲ W R, YUNG S P, et al.The NASA/MSFC global reference atmospheric model: 1995 version (GRAM-95): NASA-TM-4715[R].Washington, D.C.: NASA, 1995.
    [11]
    程旋, 肖存英, 胡雄, 等.基于TIMED/SABER卫星温度数据对大气经验模型的评估[J].中国科学:物理学、力学、天文学, 2018, 48(10):79-93. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201810008.htm

    CHENG X, XIAO C Y, HU X, et al.Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data[J].Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(10):79-93(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JGXK201810008.htm
    [12]
    刘一博, 沈作军, 张向宇.一种区域参考大气密度的建模与应用方法[J].北京航空航天大学学报, 2019, 45(10):2079-2088. doi: 10.13700/j.bh.1001-5965.2019.0057

    LIU Y B, SHEN Z J, ZHANG X Y.A method for range reference density modeling and application[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10):2079-2088(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0057
    [13]
    肖存英, 胡雄, 杨钧烽, 等.临近空间38°N大气密度特性及建模技术[J].北京航空航天大学学报, 2017, 43(9):1757-1765. doi: 10.13700/j.bh.1001-5965.2016.0735

    XIAO C Y, HU X, YANG J F, et al.Characteristics of atmospheric density at 38°N in near space and its modeling technique[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1757-1765(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0735
    [14]
    ESPLIN R, ZOLLINGER L, BATTY C, et al.SABER instrument design update[J].Infrared Spaceborne Remote Sensing Ⅲ, 1995, 2553:253-263. doi: 10.1117/12.221361
    [15]
    REMSBERG E E, MARSHALL B T, GARCIA-COMAS M, et al.Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J].Journal of Geophysical Research-Atmospheres, 2008, 113(D17):D17101. http://pure.ltu.se/portal/sv/publications/assessment-of-the-quality-of-the-version-107-temperatureversuspressure-profiles-of-the-middle-atmosphere-from-timedsaber(1ba23e2e-5b06-4e80-9d2f-3e05c198fd68).html
    [16]
    宫晓艳, 胡雄, 吴小成, 等.COSMIC大气掩星与SABER/TIMED探测温度数据比较[J].地球物理学报, 2013, 56(7):2152-2162. http://d.wanfangdata.com.cn/Periodical/dqwlxb201307002

    GONG X Y, HU X, WU X C, et al.Comparision of temperature measurements between COSMIC atmospheric radio occulation and SABER/TIMED[J].Chinese Journal of Geophysics, 2013, 56(7):2152-2162(in Chinese). http://d.wanfangdata.com.cn/Periodical/dqwlxb201307002
    [17]
    GU S Y, LI T, DOU X K, et al.Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI[J].Journal of Geophysical Research-Atmospheres, 2013, 118(4):1624-1639. doi: 10.1002/jgrd.50191/full
    [18]
    LI X, WAN W X, REN Z P, et al.The variability of SE2 tide extracted from TIMED/SABER observations[J].Journal of Geophysical Research-Space Physics, 2017, 122(2):2136-2150. doi: 10.1002/2016JA023435
    [19]
    XU J Y, SMITH A K, YUAN W, et al.Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER[J].Journal of Geophysical Research-Atmospheres, 2007, 112:D24106. doi: 10.1029/2007JD008546
    [20]
    万田, 刘洪伟, 樊菁.100 km附近大气密度模型的误差带和置信度[J].中国科学:物理学、力学、天文学, 2015, 45(12):66-72. http://qikan.cqvip.com/Qikan/Article/Detail?id=666760523

    WAN T, LIU H W, FAN J.Error band and confidence coefficient of atmospheric density models around altitude 100 km[J].Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):66-72(in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=666760523
    [21]
    肖存英, 胡雄, 王博, 等.临近空间大气扰动变化特性的定量研究[J].地球物理学报, 2016, 59(4):1211-1221. http://www.cqvip.com/QK/94718X/20164/668534122.html

    XIAO C Y, HU X, WANG B, et al.Quantiative studies on the variations of near space atmospheric fluctuation[J].Chinese Journal of Geophysics, 2016, 59(4):1211-1221(in Chinese). http://www.cqvip.com/QK/94718X/20164/668534122.html
    [22]
    JUSTUS C G, JOHNSON D L.The NASA/MSFC global reference atmospheric model: 1999 version (GRAM-99): NASA/TM-1999-209630[R].Washington, D.C.: NASA, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(904) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return