Volume 46 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
WU Qingbo, WANG Rui, REN Wenqiet al. Learning shrinkage fields for low-light image enhancement via Retinex[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1711-1720. doi: 10.13700/j.bh.1001-5965.2020.0064(in Chinese)
Citation: WU Qingbo, WANG Rui, REN Wenqiet al. Learning shrinkage fields for low-light image enhancement via Retinex[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1711-1720. doi: 10.13700/j.bh.1001-5965.2020.0064(in Chinese)

Learning shrinkage fields for low-light image enhancement via Retinex

doi: 10.13700/j.bh.1001-5965.2020.0064
Funds:

National Natural Science Foundation of China U1605252

National Natural Science Foundation of China U1803264

National Natural Science Foundation of China 61802403

National Key R & D Program of China 2019YFB1406500

Beijing Natural Science Foundation L182057

Beijing Natural Science Foundation KZ201910005007

Beijing Natural Science Foundation L182057

More Information
  • Corresponding author: REN Wenqi, E-mail: renwenqi@iie.ac.cn
  • Received Date: 02 Mar 2020
  • Accepted Date: 20 Mar 2020
  • Publish Date: 20 Sep 2020
  • To enhance a low-light image and mitigate noises simultaneously, we propose an image enhancement algorithm by learning Shrinkage Field (SF) to improve the reflectance image and the illumination map in Retinex model. To this end, first, we design a novel objective function by constraining the latent reflectance image and the illumination map with two different groups of high-order filters in regularization terms. These filters can be learnt to possess various activation patterns and thus facilitate recovering the reflectance image and suppressing noises at the same time. Then, we update the latent variables in the objective function optimization by calculating SFs, where the parameterized shrinkage functions are capable to scale the responses of the corresponding high-order filters convolving the reflectance image and the illumination map. Finally, we embed an auxiliary SF model before the update of the illumination map in each cascade to suppress the propagation of noises and undesirable artifacts and further to refine the estimation of illumination map. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art low-light image enhancement methods in terms of Peak Signal to Noise Ratio(PSNR) and Structural Similarity (SSIM).

     

  • loading
  • [1]
    WANG R, LIANG D, ZHANG W, et al.MatchDR: Image correspondence by leveraging distance ratio constraint[C]//ACM International Conference on Multimedia.New York: ACM, 2016: 606-610.
    [2]
    GUO Y F, CAO X C, ZHANG W, et al.Fake colorized image detection[J].IEEE Transactions on Information Forensics and Security, 2018, 13(8):1932-1944. doi: 10.1109/TIFS.2018.2806926
    [3]
    GUO Y F, AU O C, WANG R, et al.Half image watermarking by content aware double-sided embedding error diffusion[J].IEEE Transaction on Image Processing, 2018, 27(7):3387-3402. doi: 10.1109/TIP.2018.2815181
    [4]
    PIZER S M, JOHNSTON R E, ERICKSEN J P, et al.Contrast-limited adaptive histogram equalization: Speed and effectiveness[C]//Proceedings of 1st Conference on Visualization in Biomedical Computing.Piscataway: IEEE Press, 1990: 22-25.
    [5]
    ARICI T, DIKBAS S, ALTUNBASAK Y.A histogram modification framework and its application for image contrast enhancement[J].IEEE Transactions on Image Processing, 2009, 18(9):1921-1935. doi: 10.1109/TIP.2009.2021548
    [6]
    LAND E H, MCCANN J J.Lightness and Retinex theory[J].Journal of the Optical Society of America, 1971, 61(1):1-11. doi: 10.1364/JOSA.61.000001
    [7]
    GUO X J, LI Y, LING H B.LIME:Low-light image enhancement via illumination map estimation[J].IEEE Transactions on Image Processing, 2017, 26(2):982-993. doi: 10.1109/TIP.2016.2639450
    [8]
    FU X Y, LIAO Y H, ZENG D L, et al.A probabilistic method for image enhancement with simultaneous illustration and reflectance estimation[J].IEEE Transactions on Image Processing, 2015, 24(12):4965-4977. doi: 10.1109/TIP.2015.2474701
    [9]
    LI M D, LIU J Y, YANG W H, et al.Structure-revealing low-light image enhancement via robust Retinex model[J].IEEE Transactions on Image Processing, 2018, 27(6):2828-2841. doi: 10.1109/TIP.2018.2810539
    [10]
    YUE H J, YANG J Y, SUN X Y, et al.Contrast enhancement based on intrinsic image decomposition[J].IEEE Transactions on Image Processing, 2017, 26(8):3981-3994. doi: 10.1109/TIP.2017.2703078
    [11]
    BANIC N, LONCARIC S.Light random sprays Retinex:Exploring the noisy illumination estimation[J].IEEE Signal Processing Letters, 2013, 20(12):1240-1243. doi: 10.1109/LSP.2013.2285960
    [12]
    PARK S, YU S, MOON B, et al.Low-light image enhancement using variational optimization-based Retinex model[J].IEEE Transactions on Consumer Electronics, 2017, 63(2):178-184. doi: 10.1109/TCE.2017.014847
    [13]
    NG M K, WANG W.A total variation model for Retinex[J].Society for Industrial and Applied Mathemetics, 2011, 4(1):345-365. http://dl.acm.org/citation.cfm?id=2078709
    [14]
    FU X Y, ZENG D, HUANG Y, et al.A weighted variational model for simultaneous reflectance and illumination estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 2782-2790.
    [15]
    DABOV V K K, FOI A, EGIAZARIAN K O.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. doi: 10.1109/TIP.2007.901238
    [16]
    WEI C, WANG W J, YANG W H, et al.Deep Retinex decomposition for low-light enhancement[C]//British Machine Vision Conference, 2018: 155-166.
    [17]
    SHEN L, YUE Z H, FENG F, et al.MSR-net: Low-light image enhancement using deep convolustional network[EB/OL].(2017-11-07)[2020-03-01].https://arxiv.org/abs/1711.02488.
    [18]
    JOBSON D J, RAHMAN Z U, WOODELL G A.A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Transactions on Image Processing, 1997, 6(7):965-976. doi: 10.1109/83.597272
    [19]
    PARK S, YU S, KIM M, et al.Dual autoencoder network for Retinex-based low-light image enhancement[J].IEEE Access, 2019, 6:22084-22093. http://ieeexplore.ieee.org/document/8307190/
    [20]
    REN W Q, LIU S F, MA L, et al.Low-light image enhancement via a deep hybrid network[J].IEEE Transactions on Image Processing, 2019, 28(9):4364-4375. doi: 10.1109/TIP.2019.2910412
    [21]
    CAI J R, GU S H, ZHANG L.Learning a deep single image contrast enhancer from multi-exposure images[J].IEEE Transactions on Image Processing, 2018, 27(4):2049-2062. doi: 10.1109/TIP.2018.2794218
    [22]
    ZHU M F, PAN P B, CHEN W, et al.EEMEFN: Low-light image enhancement via edge-enhanced multi-exposure fusion network[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 13106-13113.
    [23]
    CHEN C, CHEN Q F, XU J, et al.Learning to see in the dark[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2018: 3291-3300.
    [24]
    LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2015: 3431-3440.
    [25]
    SCHMIDT U, ROTH S.Shrinkage fields for effective image restoration[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2014, 1: 2774-2781.
    [26]
    XIAO L, WANG J, HEIDRICH W, et al.Learning high-order filters for efficient blind deconvolution of document photographs[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 734-749.
    [27]
    WU Q B, REN W Q, CAO X C.Learning interleaved cascade of shrinkage fields for joint image dehazing and denoising[J].IEEE Transactions on Image Processing, 2020, 29:1788-1801. doi: 10.1109/TIP.2019.2942504
    [28]
    WEN B, KAMILOV U, LIU D, et al.DeepCASD: An end-to-end approach for multi-spectral image super-resolution[C]//Proceedings of International Conference on Acoustics, Speech, and Signal Processing.Piscataway: IEEE Press, 2018: 6503-6505.
    [29]
    SAAD Y, SCHULTZ M H.GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].Society for Industrial and Applied Mathemetics, 1986, 7(3):856-869. http://cn.bing.com/academic/profile?id=3d78f4ae4ddb2205fc9f8f8a59481dfb&encoded=0&v=paper_preview&mkt=zh-cn
    [30]
    WANG Y, CAO Y, ZHA Z J.Progressive Retinex: Mutually reinforced illustration-noise perception network for low light image enhancement[C]//ACM International Conference on Multimedia.New York: ACM, 2019: 2015-2023.
    [31]
    SCHMIDT M.minFunc: Unconstrained differentiable multivariate optimization in Matlab[EB/OL].[2020-03-01].https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html,2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(669) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return