Volume 47 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
GUAN Qingyu, FENG Jianfei, XIA Pinqi, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132(in Chinese)
Citation: GUAN Qingyu, FENG Jianfei, XIA Pinqi, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132(in Chinese)

Low-velocity impact behavior and residual tensile strength of composite laminates

doi: 10.13700/j.bh.1001-5965.2020.0132
More Information
  • Corresponding author: XIA Pinqi, E-mail: xiapq@nuaa.edu.cn
  • Received Date: 08 Apr 2020
  • Accepted Date: 08 May 2020
  • Publish Date: 20 Jun 2021
  • The low-velocity impact behavior and residual tensile strength of composite laminates are experimentally studied in this paper. Firstly, the effects of impactor type and layup type on the impact responses of laminates are investigated by impact tests, and damage characteristics are evaluated by using the dent depth, damage projection area, impact force and impact energy translation. Secondly, the tensile response and residual tensile strength of the laminates after impact are investigated by quasi-static tensile tests. Finally, the mechanism of the effects of impactor type and layup type on the impact behavior and residual tensile strength of the laminates are analyzed. The results indicate that: the effect of impactor type on impact damage of composite laminate is closely related to the function of the projection area of impact contact surface with the dent depth; under the condition of high impact energy, the strip impactor is a critical impact threat to damage, while the damage caused by corner impactor is relatively not serious; the type of layup has a remarkable influence on the impact damage resistance performance and tensile fracture morphology of the laminates.

     

  • loading
  • [1]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2]
    杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [3]
    LIU H B, FALZON B G, TAN W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part B: Engineering, 2018, 136: 101-118. doi: 10.1016/j.compositesb.2017.10.016
    [4]
    林智育, 许希武. 含冲击损伤复合材料加筋层板压缩剩余强度[J]. 航空学报, 2009, 30(1): 56-61. doi: 10.3321/j.issn:1000-6893.2009.01.008

    LIN Z Y, XU X W. Residual compressive strength of stiffened composite laminates with impact damage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 56-61(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.01.008
    [5]
    AHN S S, HONG S W, KOO J M, et al. Evaluation of compressive residual strength in composite material under impact damage[J]. Transactions of the Korean Society of Mechanical Engineers, 2013, 37(4): 503-509. doi: 10.3795/KSME-A.2013.37.4.503
    [6]
    ANDREWA J J, SRINIVASANA S M, AROCKIARAJAN A. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures, 2019, 224(9): 1-26. http://www.sciencedirect.com/science/article/pii/S0263822318343575
    [7]
    CMH-17 Committee. Composite materials handbook. Vol 3: Polymer matrix composites materials usage, design, and analysis[M]. Detroit: SAE International, 2012: 2-33.
    [8]
    DELANEY M P, FUNG S Y K, KIM H. Dent depth visibility versus delamination damage for impact of composite panels by tips of varying radius[J]. Journal of Composite Materials, 2018, 52(19): 2691-2705. doi: 10.1177/0021998317752502
    [9]
    MITREVSKI T, MARSHALL I H, THOMSON R, et al. The influence of impactor shape on the damage to composite laminates[J]. Composite Structures, 2006, 76: 116-122. doi: 10.1016/j.compstruct.2006.06.017
    [10]
    MITREVSKI T, MARSHALL I H, THOMSON R, et al. Low-velocity impacts on preloaded GFRP specimens with various impactor shapes[J]. Composite Structures, 2006, 76: 209-217. doi: 10.1016/j.compstruct.2006.06.033
    [11]
    YU Z F, GAO S J. Increase of contact radius due to deflection in low velocity impact of composite laminates and prediction of delamination threshold load[J]. Composite Structures, 2016, 147: 286-293. doi: 10.1016/j.compstruct.2016.03.029
    [12]
    AMARO A M, REIS P N B, MAGALHAES A G, et al. The effect of the impactor diameter and boundary conditions on low velocity impact composites behavior[J]. Applied Mechanics and Materials, 2007, 7: 217-222. http://www.scientific.net/AMM.7-8.217
    [13]
    BULENT M I, BINNUR G K, MEHMET E D, et al. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates[J]. Composites Part B, 2013, 50: 325-332. doi: 10.1016/j.compositesb.2013.02.024
    [14]
    ALI K, MEHMET S, HALIL M E, et al. Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling[J]. Composites Part B, 2016, 86: 143-151. doi: 10.1016/j.compositesb.2015.09.032
    [15]
    MILI F, NECIB B. The effect of stacking sequence on the impact-induced damage in cross-ply E-glass/epoxy composite plates[J]. Archive of Applied Mechanics, 2009, 79(11): 1019-1031. doi: 10.1007/s00419-008-0272-z
    [16]
    CZANOCKI P. Delamination resistance of laminates with various stacking sequences against low velocity impacts[J]. Solid State Phenom, 2015, 240: 143-148. doi: 10.4028/www.scientific.net/SSP.240.143
    [17]
    ZHOU J W, LIAO B B, SHI Y Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B, 2019, 161: 300-313. doi: 10.1016/j.compositesb.2018.10.090
    [18]
    邹健, 程小全, 陈浩, 等. 二维织物增强层合板高速冲击后拉伸性能模拟[J]. 北京航空航天大学学报, 2008, 34(6): 638-642. https://bhxb.buaa.edu.cn/CN/Y2008/V34/I06/638

    ZOU J, CHENG X Q, CHEN H, et al. Tensile properties simulation of two-dimensional woven reinforced composite laminates after high velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(6): 638-642(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2008/V34/I06/638
    [19]
    程小全, 康炘蒙, 邹健, 等. 平面编织复合材料层合板低速冲击后的拉伸性能[J]. 复合材料学报, 2008, 25(5): 163-168. doi: 10.3321/j.issn:1000-3851.2008.05.027

    CHENG X Q, KANG X M, ZHOU J, et al. Tensile properties of plane woven composite laminates after low velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 163-168(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.027
    [20]
    屈天骄, 郑锡涛, 范献银, 等. 复合材料层合板低速冲击损伤影响因素分析[J]. 航空材料学报, 2011, 31(6): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106015.htm

    QU T J, ZHENG X T, FAN X Y. Exploration of several influence factors of low-velocity impact damage on composite laminates[J]. Journal of Aeronautical Materials, 2011, 31(6): 81-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106015.htm
    [21]
    AKTAS M, ATAS C, ICTEN B M, et al. An experimental investigation of the impact response of composite laminates[J]. Composite Structure, 2009, 87: 307-313. doi: 10.1016/j.compstruct.2008.02.003
    [22]
    EVCI C, GULGEC M. An experimental investigation on the impact response of composite materials[J]. International Journal of Impact Engineering, 2012, 43: 40-51. doi: 10.1016/j.ijimpeng.2011.11.009
    [23]
    LI X K, LIU P F. Experimental analysis of low-velocity impact behaviors of carbon fiber composite laminates[J]. Journal of Failure Analysis and Prevention, 2017, 17(6): 1126-1130. doi: 10.1007/s11668-017-0350-z
    [24]
    XU Z, YANG F, GUAN Z W, CANTWELL W J. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates[J]. Composite Structure, 2016, 154: 69-78. doi: 10.1016/j.compstruct.2016.07.029
    [25]
    BALASUBRAMANI V, BOOPATHY S R. Prediction of residual tensile strength of laminated composite plates after low velocity impact[J]. ARPN Journal of Engineering and Applied Sciences, 2014, 9: 320-325. http://www.researchgate.net/publication/286017624_Prediction_of_residual_tensile_strength_of_laminated_composite_plates_after_low_velocity_impact
    [26]
    KHAN H A, NIGAR M, CHAUDHRY I A. Tensile behavior of unidirectional carbon reinforced composites for aerospace structures under varying strain rates[J]. Applied Mechanics and Materials, 2015, 798: 357-361. doi: 10.4028/www.scientific.net/AMM.798.357
    [27]
    MOSALLAM A, SLENK J, KREINER J. Assessment of residual tensile strength of carbon/epoxy composites subjected to low-energy impact[J]. Journal of Aerospace Engineering, 2008, 21(4): 249-258. doi: 10.1061/(ASCE)0893-1321(2008)21:4(249)
    [28]
    ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-15[S]. West Conshohocken: ASTM International, 2015.
    [29]
    ASTM Committee. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D3039/D3039M-14[S]. West Conshohocken: ASTM International, 2012.
    [30]
    DANIEL W, HYONNY K. Effect of impactor radius on low-velocity impact damage of glass/epoxy composites[J]. Journal of Composite Materials, 2012, 46(25): 3137-3149. doi: 10.1177/0021998312436991
    [31]
    HITCHEN S, KEMP R. The effect of stacking sequence on impact damage in a carbon fiber/epoxy composite[J]. Composites, 1995, 26(3): 207-214. doi: 10.1016/0010-4361(95)91384-H
    [32]
    LI T, YANG Y, YU X, et al. Micro-structure response and fracture mechanisms of C/SiC composites subjected to low-velocity ballistic penetration[J]. Ceramics International, 2017, 43: 6910-6918. http://www.sciencedirect.com/science/article/pii/S0272884217303024
    [33]
    LI T, MO J, YU X, et al. Mechanical behavior of C/SiC composites under hypervelocity impact at different temperatures: Micro-structures, damage and mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 19-26. doi: 10.1016/j.compositesa.2016.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(460) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return