Volume 47 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
LIU Zhitao, LI Jianqing, GAO Changshenget al. ADRC-based roll-yaw coupling control of underactuated moving mass flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 281-288. doi: 10.13700/j.bh.1001-5965.2020.0206(in Chinese)
Citation: LIU Zhitao, LI Jianqing, GAO Changshenget al. ADRC-based roll-yaw coupling control of underactuated moving mass flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 281-288. doi: 10.13700/j.bh.1001-5965.2020.0206(in Chinese)

ADRC-based roll-yaw coupling control of underactuated moving mass flight vehicles

doi: 10.13700/j.bh.1001-5965.2020.0206
Funds:

National Natural Science Foundation of China 11802268

China Postdoctoral Science Foundation 2019M652087

CAEP Foundation PY20200050

More Information
  • Corresponding author: LIU Zhitao. E-mail: zhitaoliu123@163.com
  • Received Date: 24 May 2020
  • Accepted Date: 17 Jul 2020
  • Publish Date: 20 Feb 2021
  • Considering the underactuated problem of flight vehicles with single moving mass roll control system, this paper proposes a controller based on the idea of active disturbance rejection, which achieves the command roll angle tracking and sideslip angle stabilization control only with the laterally configured single moving mass. The system attitude dynamics is modeled based on the momentum theorem of particle system, analysis shows that the roll and yaw channels share the same control input and are coupled by moving mass inertial and movement terms, and the lateral offset of the moving mass will impact the yaw channel. Therefore, an Active Disturbance Rejection Controller (ADRC) is designed to deal with the roll-yaw coupling control problem, where the modeling error, moving mass coupling and uncertainties are regarded as total disturbances, and extended state observation and dynamic compensation of total disturbances for both the roll angle control and sideslip angle stabilization subsystems are conducted, the controller with simple structure is easy to implement and it is capable of resisting both internal and external disturbances. Finally, the effectiveness and robustness of the proposed controller are verified by numerical simulations with perturbations.

     

  • loading
  • [1]
    LI J Q, GAO C S, LI C Y, et al. A survey on moving mass control technology[J]. Aerospace Science and Technology, 2018, 82-83: 594-606. doi: 10.1016/j.ast.2018.09.033
    [2]
    ROBINETT R D, STURGIS B R, KERR S A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1064-1070. doi: 10.2514/3.21746
    [3]
    ROGERS J, COSTELLO M. Control authority of a projectile equipped with a controllable internal translating mass[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1323-1333. doi: 10.2514/1.33961
    [4]
    MENON P K, SWERIDUK G D, OHLMEYER E J, et al. Integrated guidance and control of moving mass actuated kinetic war-heads[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 118-126. doi: 10.2514/1.9336
    [5]
    VADDI S, MENON P K, OHLMEYER E J. Numerical state-dependent riccati equation approach for missile integrated guidance control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 699-703. doi: 10.2514/1.34291
    [6]
    高长生, 荆武兴, 李君龙. 导弹质量矩控制技术发展综述[J]. 宇航学报, 2010, 31(2): 307-323. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002003.htm

    GAO C S, JING W X, LI J L, et al. Key technique and development for moving mass actuated kinetic missile[J]. Journal of Astronautics, 2010, 31(2): 307-323(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002003.htm
    [7]
    廖国兵, 于本水, 杨宇光. 质量矩控制技术的机理分析及方程简化研究[J]. 系统工程与电子技术, 2004, 26(11): 1635-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200411029.htm

    LIAO G B, YU B S, YANG Y G. Study on the theory and simplified equations of mass moment control missile[J]. Systems Engineering and Electronics, 2004, 26(11): 1635-1639(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200411029.htm
    [8]
    林鹏, 周凤岐, 周军. 基于变质心控制方式的再入弹头控制模式研究[J]. 航天控制, 2007, 25(2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ200702003.htm

    LIN P, ZHOU F Q, ZHOU J. Moving centroid control mode for reentry warhead[J]. Aerospace Control, 2007, 25(2): 16-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ200702003.htm
    [9]
    易彦, 周凤岐, 周军. 基于变质心控制导弹的运动分析[J]. 航天控制, 2000, 18(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ200003000.htm

    YI Y, ZHOU F Q, ZHOU J. Motion analysis on moving center of mass controlled missile[J]. Aerospace Control, 2000, 18(3): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ200003000.htm
    [10]
    LI J Q, CHEN S, LI C Y, et al. Adaptive control of underactuated flight vehicles with moving mass[J]. Aerospace Science and Technology, 2019, 85: 75-84. doi: 10.1016/j.ast.2018.12.003
    [11]
    LIU Z T, GAO C S, LI J Q, et al. Closed-loop bifurcation analysis for a novel moving mass flight vehicle[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(4): 962-975. doi: 10.1007/s42405-018-0082-7
    [12]
    秦莉, 杨明, 郭庆. 遗传算法在质量矩导弹姿态控制中的应用[J]. 北京航空航天大学学报, 2007, 33(7): 769-772. https://bhxb.buaa.edu.cn/CN/Y2007/V33/I07/769

    QIN L, YANG M, GUO Q. Moving-mass attitude control law based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 769-772(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2007/V33/I07/769
    [13]
    王松艳, 杨明, 王子才. 旋转弹的神经网络变质心姿态控制[J]. 北京航空航天大学学报, 2006, 32(8): 962-965. https://bhxb.buaa.edu.cn/CN/Y2006/V32/I08/962

    WANG S Y, YANG M, WANG Z C. Moving-mass attitude control system for spinning vehicles based on neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 962-965(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2006/V32/I08/962
    [14]
    LI G L, CHAO T, WANG S Y, et al. Integrated guidance and control for the fixed-trim vehicle against the maneuvering target[J]. International Journal of Control, Automation, and Systems, 2020, 18(6): 1518-1529. doi: 10.1007/s12555-018-0824-0
    [15]
    DONG K X, ZHOU J, ZHOU M, et al. Roll control for single moving-mass actuated fixed-trim reentry vehicle considering full state constraints[J]. Aerospace Science and Technology, 2019, 94: 1-14. http://www.sciencedirect.com/science/article/pii/S1270963818326038
    [16]
    NI K, WANG Z B, ZHANG Q Z, et al. Antiwindup spinning guidance for fixed-trim entry vehicles by active disturbance rejection control[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1092-1106. doi: 10.2514/1.A34240
    [17]
    PETSOPOULOS T, REGAN F J, BARLOW J. Moving-mass roll control system for fixed trim re-entry vehicle[J]. Journal of Spacecraft and Rockets, 1996, 33(1): 54-60. doi: 10.2514/3.55707
    [18]
    王林林, 于剑桥, 王亚飞, 等. 单滑块变质心非对称再入飞行器建模及控制[J]. 系统工程与电子技术, 2015, 37(5): 1116-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201505023.htm

    WANG L L, YU J Q, WANG Y F, et al. Single moving-mass asymmetrical reentry vehicle modeling and control[J]. Systems Engineering and Electronics, 2015, 37(5): 1116-1123(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201505023.htm
    [19]
    SU X L, YU J Q, WANG Y F, et al. Moving mass actuated reentry vehicle control based on trajectory linearization[J]. International Journal of Aeronautical and Space Sciences, 2013, 14(3): 247-255. doi: 10.5139/IJASS.2013.14.3.247
    [20]
    李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制[J]. 航空学报, 2012, 33(11): 2121-2129. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211021.htm

    LI Z X, LI G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2121-2129(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211021.htm
    [21]
    范一迪, 荆武兴, 高长生, 等. 滚控式变质心飞行器动力学特性分析与控制[J]. 宇航学报, 2019, 40(4): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201904004.htm

    FAN Y D, JING W X, GAO C S, et al. Analysis of dynamics characteristics and control of a flight vehicle with a moving-mass roll control system[J]. Journal of Astronautics, 2019, 40(4): 386-395(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201904004.htm
    [22]
    OLFATI-SABER R. Normal forms for underactuated mechanical systems with symmetry[J]. IEEE Transactions on Automatic Control, 2002, 47(2): 305-308. doi: 10.1109/9.983365
    [23]
    HUSSEIN I I, BLOCH A M. Optimal control of underactuated nonholonomic mechanical systems[J]. IEEE Transactions on Automatic Control, 2008, 53(3): 668-682. doi: 10.1109/TAC.2008.919853
    [24]
    HU G, DIXON W E, MAKKAR C. Energy-based nonlinear control of underactuated Euler-Lagrange systems subject to impacts[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1742-1748. doi: 10.1109/TAC.2007.904319
    [25]
    HAN J Q. From pid to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. doi: 10.1109/TIE.2008.2011621
    [26]
    SUN M W, WANG Z H, WANG Y K, et al. On low-velocity compensation of brushless DC servo in the absence of friction model[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3897-3905. doi: 10.1109/TIE.2012.2208434
    [27]
    XIA Y Q, ZHU Z, FU M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 647-659. doi: 10.1109/TIE.2010.2046611
    [28]
    SU J B, MA H Y, QIU W B, et al. Task-independent robotic uncalibrated hand-eye coordination based on the extended state observer[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(4): 1917-1922. doi: 10.1109/TSMCB.2004.827615
    [29]
    LI C Y, JING W X, GAO C S. Adaptive backstepping-based flight control system using integral filters[J]. Aerospace Science and Technology, 2009, 13: 105-113. doi: 10.1016/j.ast.2008.05.002
    [30]
    韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 243-280.

    HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 243-280(in Chinese).
    [31]
    BERGH F V D, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. doi: 10.1016/j.ins.2005.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(1069) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return